IDEAS home Printed from https://ideas.repec.org/p/nwu/cmsems/925.html
   My bibliography  Save this paper

Rational Learning Leads to Nash Equilibrium

Author

Listed:
  • Ehud Kalai
  • Ehud Lehrer

Abstract

Each of n players, in an infinitely repeated game, starts with subjective beliefs about his opponents' strategies. If the individual beliefs are compatible with the true strategies chose, then Bayesian updating will lead in the long run to accurate prediction of the future of play of the game. It follows that individual players, who know their own payoff matrices and choose strategies to maximize their expected utility, must eventually play according to a Nash equilibrium of the repeated game. An immediate corollary is that, when playing a Harsanyi-Nash equilibrium of a repeated game of incomplete information about opponents' payoff matrices, players will eventually play a Nash equilibrium of the real game, as if they had complete information.

Suggested Citation

  • Ehud Kalai & Ehud Lehrer, 1990. "Rational Learning Leads to Nash Equilibrium," Discussion Papers 925, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  • Handle: RePEc:nwu:cmsems:925
    as

    Download full text from publisher

    File URL: http://www.kellogg.northwestern.edu/research/math/papers/925.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jordan, J. S., 1991. "Bayesian learning in normal form games," Games and Economic Behavior, Elsevier, vol. 3(1), pages 60-81, February.
    2. Kalai, Ehud & Lehrer, Ehud, 1994. "Weak and strong merging of opinions," Journal of Mathematical Economics, Elsevier, vol. 23(1), pages 73-86, January.
    3. Nyarko, Yaw, 1991. "Learning in mis-specified models and the possibility of cycles," Journal of Economic Theory, Elsevier, vol. 55(2), pages 416-427, December.
    4. MERTENS, Jean-François, 1987. "Repeated games. Proceedings of the International Congress of Mathematicians," LIDAM Reprints CORE 788, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Canning, David, 1992. "Average behavior in learning models," Journal of Economic Theory, Elsevier, vol. 57(2), pages 442-472, August.
    6. Fudenberg, Drew & Levine, David K, 1993. "Self-Confirming Equilibrium," Econometrica, Econometric Society, vol. 61(3), pages 523-545, May.
    7. Aumann, Robert J. & Heifetz, Aviad, 2002. "Incomplete information," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 43, pages 1665-1686, Elsevier.
    8. Fudenberg, Drew & Levine, David K, 1993. "Steady State Learning and Nash Equilibrium," Econometrica, Econometric Society, vol. 61(3), pages 547-573, May.
    9. Monderer Dov & Samet Dov, 1995. "Stochastic Common Learning," Games and Economic Behavior, Elsevier, vol. 9(2), pages 161-171, May.
    10. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    11. Roth, Alvin E. & Vesna Prasnikar & Masahiro Okuno-Fujiwara & Shmuel Zamir, 1991. "Bargaining and Market Behavior in Jerusalem, Ljubljana, Pittsburgh, and Tokyo: An Experimental Study," American Economic Review, American Economic Association, vol. 81(5), pages 1068-1095, December.
    12. Vesna Prasnikar & Alvin E. Roth, 1992. "Considerations of Fairness and Strategy: Experimental Data from Sequential Games," The Quarterly Journal of Economics, Oxford University Press, vol. 107(3), pages 865-888.
    13. Jordan, J. S., 1992. "The exponential convergence of Bayesian learning in normal form games," Games and Economic Behavior, Elsevier, vol. 4(2), pages 202-217, April.
    14. Mertens,Jean-François & Sorin,Sylvain & Zamir,Shmuel, 2015. "Repeated Games," Cambridge Books, Cambridge University Press, number 9781107030206.
      • Mertens,Jean-François & Sorin,Sylvain & Zamir,Shmuel, 2015. "Repeated Games," Cambridge Books, Cambridge University Press, number 9781107662636.
    15. Milgrom, Paul & Roberts, John, 1991. "Adaptive and sophisticated learning in normal form games," Games and Economic Behavior, Elsevier, vol. 3(1), pages 82-100, February.
    16. Kalai, Ehud & Lehrer, Ehud, 1993. "Subjective Equilibrium in Repeated Games," Econometrica, Econometric Society, vol. 61(5), pages 1231-1240, September.
    17. Jordan, J. S., 1985. "Learning rational expectations: The finite state case," Journal of Economic Theory, Elsevier, vol. 36(2), pages 257-276, August.
    18. Rothschild, Michael, 1974. "A two-armed bandit theory of market pricing," Journal of Economic Theory, Elsevier, vol. 9(2), pages 185-202, October.
    19. Woodford, Michael, 1990. "Learning to Believe in Sunspots," Econometrica, Econometric Society, vol. 58(2), pages 277-307, March.
    20. Margaret Bray & David M. Kreps, 1987. "Rational Learning and Rational Expectations," Palgrave Macmillan Books, in: George R. Feiwel (ed.), Arrow and the Ascent of Modern Economic Theory, chapter 19, pages 597-625, Palgrave Macmillan.
    21. David Canning, 1989. "Convergence to Equilibrium in a Sequence for Games with Learning," STICERD - Theoretical Economics Paper Series 190, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    22. Grandmont Jean-michel & Laroque G, 1990. "Economic dynamics with learning : some instability examples," CEPREMAP Working Papers (Couverture Orange) 9007, CEPREMAP.
    23. Blume, L. E. & Bray, M. M. & Easley, D., 1982. "Introduction to the stability of rational expectations equilibrium," Journal of Economic Theory, Elsevier, vol. 26(2), pages 313-317, April.
    24. Sergiu Hart, 1985. "Nonzero-Sum Two-Person Repeated Games with Incomplete Information," Mathematics of Operations Research, INFORMS, vol. 10(1), pages 117-153, February.
    25. repec:cor:louvrp:-636 is not listed on IDEAS
    26. Pearce, David G, 1984. "Rationalizable Strategic Behavior and the Problem of Perfection," Econometrica, Econometric Society, vol. 52(4), pages 1029-1050, July.
    27. Lawrence Blume & David Easley, 1993. "Rational Expectations and Rational Learning," Game Theory and Information 9307003, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Michel Grandmont, 1998. "Expectations Formation and Stability of Large Socioeconomic Systems," Econometrica, Econometric Society, vol. 66(4), pages 741-782, July.
    2. Mario Gilli, 2002. "Rational Learning in Imperfect Monitoring Games," Working Papers 46, University of Milano-Bicocca, Department of Economics, revised Mar 2002.
    3. Kalai, Ehud & Lehrer, Ehud, 1995. "Subjective games and equilibria," Games and Economic Behavior, Elsevier, vol. 8(1), pages 123-163.
    4. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
    5. Ramon Marimon & Ellen McGrattan, 1993. "On adaptive learning in strategic games," Economics Working Papers 24, Department of Economics and Business, Universitat Pompeu Fabra.
    6. Yoo, Seung Han, 2014. "Learning a population distribution," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 188-201.
    7. Sobel, Joel, 2000. "Economists' Models of Learning," Journal of Economic Theory, Elsevier, vol. 94(2), pages 241-261, October.
    8. Ignacio Esponda & Demian Pouzo, 2015. "Equilibrium in Misspecified Markov Decision Processes," Papers 1502.06901, arXiv.org, revised May 2016.
    9. Lagunoff, Roger, 1997. "On the dynamic selection of mechanisms for provision of public projects," Journal of Economic Dynamics and Control, Elsevier, vol. 21(10), pages 1699-1725, August.
    10. Sorin, Sylvain, 1999. "Merging, Reputation, and Repeated Games with Incomplete Information," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 274-308, October.
    11. Sandroni, Alvaro, 1998. "Does Rational Learning Lead to Nash Equilibrium in Finitely Repeated Games?," Journal of Economic Theory, Elsevier, vol. 78(1), pages 195-218, January.
    12. Jackson, Matthew O. & Kalai, Ehud, 1997. "Social Learning in Recurring Games," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 102-134, October.
    13. Schipper, Burkhard C., 2021. "Discovery and equilibrium in games with unawareness," Journal of Economic Theory, Elsevier, vol. 198(C).
    14. Ennis, Huberto M. & Keister, Todd, 2005. "Government policy and the probability of coordination failures," European Economic Review, Elsevier, vol. 49(4), pages 939-973, May.
    15. Manxi Wu & Saurabh Amin & Asuman Ozdaglar, 2021. "Multi-agent Bayesian Learning with Best Response Dynamics: Convergence and Stability," Papers 2109.00719, arXiv.org.
    16. Yaron Azrieli, 2009. "On pure conjectural equilibrium with non-manipulable information," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(2), pages 209-219, June.
    17. Ignacio Esponda & Demian Pouzo, 2014. "Berk-Nash Equilibrium: A Framework for Modeling Agents with Misspecified Models," Papers 1411.1152, arXiv.org, revised Nov 2019.
    18. Vieille, Nicolas, 2002. "Stochastic games: Recent results," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 48, pages 1833-1850, Elsevier.
    19. Hopkins, Ed, 1999. "Learning, Matching, and Aggregation," Games and Economic Behavior, Elsevier, vol. 26(1), pages 79-110, January.
    20. Felipe Pérez, 1998. "- Private Experience In Adaptive Learning Models," Working Papers. Serie AD 1998-03, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nwu:cmsems:925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Fran Walker (email available below). General contact details of provider: https://edirc.repec.org/data/cmnwuus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.