IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v4y1992i2p202-217.html
   My bibliography  Save this article

The exponential convergence of Bayesian learning in normal form games

Author

Listed:
  • Jordan, J. S.

Abstract

No abstract is available for this item.

Suggested Citation

  • Jordan, J. S., 1992. "The exponential convergence of Bayesian learning in normal form games," Games and Economic Behavior, Elsevier, vol. 4(2), pages 202-217, April.
  • Handle: RePEc:eee:gamebe:v:4:y:1992:i:2:p:202-217
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0899-8256(92)90015-K
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Conlon, John R., 2003. "Hope springs eternal: learning and the stability of cooperation in short horizon repeated games," Journal of Economic Theory, Elsevier, vol. 112(1), pages 35-65, September.
    2. Epstein Larry G & Noor Jawwad & Sandroni Alvaro, 2010. "Non-Bayesian Learning," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 10(1), pages 1-20, January.
    3. Kalai, Ehud & Lehrer, Ehud, 1993. "Rational Learning Leads to Nash Equilibrium," Econometrica, Econometric Society, vol. 61(5), pages 1019-1045, September.
    4. Barrutia Legarreta, José María & Espinosa Alejos, María Paz, 2012. "Consumer Expertise or Credit Risk? An empirical analysis of mortgage pricing," DFAEII Working Papers 1988-088X, University of the Basque Country - Department of Foundations of Economic Analysis II.
    5. Vives, Xavier, 1997. "Learning from Others: A Welfare Analysis," Games and Economic Behavior, Elsevier, vol. 20(2), pages 177-200, August.
    6. Sandroni, Alvaro, 1998. "Does Rational Learning Lead to Nash Equilibrium in Finitely Repeated Games?," Journal of Economic Theory, Elsevier, vol. 78(1), pages 195-218, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:4:y:1992:i:2:p:202-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.