IDEAS home Printed from https://ideas.repec.org/p/cla/levarc/576.html

Prediction, Optimization and Learning in Repeated Games

Author

Listed:
  • John Nachbar

Abstract

Consider a two-player discounted repeated game in which each player optimizes with respect to prior beliefs about his opponent's repeated game strategy. One would like to argue that if beliefs are cautious then players will learn as the game unfolds to predict the continuation path of play. If this conjecture were true then a convergence result due to Kalai and Lehrer would imply that the continuation path would asymptotically resemble the path of a Nash equilibrium. One would thus have constructed a theory which predicts Nash equilibrium as the necessary long-run consequence of optimization by cautious players. This paper points out that there is an obstacle to such a result in the form of a potential conflict between prediction and optimization.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • John Nachbar, 2010. "Prediction, Optimization and Learning in Repeated Games," Levine's Working Paper Archive 576, David K. Levine.
  • Handle: RePEc:cla:levarc:576
    as

    Download full text from publisher

    File URL: http://www.dklevine.com/archive/refs4576.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kalai, Ehud & Stanford, William, 1988. "Finite Rationality and Interpersonal Complexity in Repeated Games," Econometrica, Econometric Society, vol. 56(2), pages 397-410, March.
    2. Binmore, Ken, 1987. "Modeling Rational Players: Part I," Economics and Philosophy, Cambridge University Press, vol. 3(2), pages 179-214, October.
    3. Lawrence Blume & David Easley, 1993. "Rational Expectations and Rational Learning," Game Theory and Information 9307003, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ho, Teck-Hua, 1996. "Finite automata play repeated prisoner's dilemma with information processing costs," Journal of Economic Dynamics and Control, Elsevier, vol. 20(1-3), pages 173-207.
    2. Hubie Chen, 2013. "Bounded rationality, strategy simplification, and equilibrium," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(3), pages 593-611, August.
    3. Nachbar, John H & Zame, William R, 1996. "Non-computable Strategies and Discounted Repeated Games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 8(1), pages 103-122, June.
    4. R. M. Harstad & R. Selten, 2014. "Bounded-rationality models:tasks to become intellectually competitive," Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 5.
    5. Mehmet Barlo & Guilherme Carmona, 2007. "One - memory in repeated games," Nova SBE Working Paper Series wp500, Universidade Nova de Lisboa, Nova School of Business and Economics.
    6. David Baron & Ehud Kalai, 1990. "Dividing a Cake by Majority: The Simplest Equilibria," Discussion Papers 919, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    7. Sergeyev, Dmitriy & Iovino, Luigi, 2018. "Central Bank Balance Sheet Policies Without Rational Expectations," CEPR Discussion Papers 13100, C.E.P.R. Discussion Papers.
    8. Philippe Jehiel, 2022. "Analogy-Based Expectation Equilibrium and Related Concepts:Theory, Applications, and Beyond," Working Papers halshs-03735680, HAL.
    9. Varoufakis, Yanis, 2013. "Finite dynamic games with full rationality and inconsistently aligned beliefs: Can the N-person backward induction deliver a solution?," International Journal of Development and Conflict, Gokhale Institute of Politics and Economics, vol. 3(1), pages 63-70.
    10. Van Damme, Eric, 2002. "Strategic equilibrium," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 41, pages 1521-1596, Elsevier.
    11. Sandholm, William H. & Izquierdo, Segismundo S. & Izquierdo, Luis R., 2019. "Best experienced payoff dynamics and cooperation in the Centipede game," Theoretical Economics, Econometric Society, vol. 14(4), November.
    12. Haruvy, Ernan & Stahl, Dale O., 2007. "Equilibrium selection and bounded rationality in symmetric normal-form games," Journal of Economic Behavior & Organization, Elsevier, vol. 62(1), pages 98-119, January.
    13. Jehiel, Philippe, 1998. "Learning to Play Limited Forecast Equilibria," Games and Economic Behavior, Elsevier, vol. 22(2), pages 274-298, February.
    14. Sent, Esther-Mirjam, 2004. "The legacy of Herbert Simon in game theory," Journal of Economic Behavior & Organization, Elsevier, vol. 53(3), pages 303-317, March.
    15. Antonio Morales, 2005. "On the Role of the Group Composition for Achieving Optimality," Annals of Operations Research, Springer, vol. 137(1), pages 387-397, July.
    16. Koppl, Roger, 2010. "Some epistemological implications of economic complexity," Journal of Economic Behavior & Organization, Elsevier, vol. 76(3), pages 859-872, December.
    17. Simon D Woodcock, 2002. "Modeling Labor Markets with Heterogeneous Agents and Matches," Longitudinal Employer-Household Dynamics Technical Papers 2002-19, Center for Economic Studies, U.S. Census Bureau.
    18. GOSSNER, Olivier, 1998. "Repeated games played by cryptographically sophisticated players," LIDAM Discussion Papers CORE 1998035, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    19. Karl WÄrneryd, 1998. "Communication, complexity, and evolutionary stability," International Journal of Game Theory, Springer;Game Theory Society, vol. 27(4), pages 599-609.
    20. Hamid Sabourian & Jihong Lee, 2004. "Complexity and Efficiency in Repeated Games with Negotiation," Econometric Society 2004 Far Eastern Meetings 401, Econometric Society.

    More about this item

    JEL classification:

    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cla:levarc:576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David K. Levine (email available below). General contact details of provider: http://www.dklevine.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.