IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this book chapter or follow this series

Strategic equilibrium

In: Handbook of Game Theory with Economic Applications

  • Van Damme, Eric

This chapter of the Handbook of Game Theory (Vol. 3) provides an overview of the theory of Nash equilibrium and its refinements. The starting-point is the rationalistic approach to games and the question whether there exists a convincing, self-enforcing theory of rational behavior in non-cooperative games. Given the assumption of independent behavior of the players, it follows that a self-enforcing theory has to prescribe a Nash equilibrium, i.e., a strategy profile such that no player can gain by a unilateral deviation. Nash equilibria exist and for generic (finite) games there is a finite number of Nash equilibrium outcomes. The chapter first describes some general properties of Nash equilibria. Next it reviews the arguments why not all Nash equilibria can be considered self-enforcing. For example, some equilibria do not satisfy a backward induction property: as soon as a certain subgame is reached, a player has an incentive to deviate. The concepts of subgame perfect equilibria, perfect equilibria and sequential equilibria are introduced to solve this problem. The chapter defines these concepts, derives properties of these concepts and relates them to other refinements such as proper equilibria and persistent equilibria. It turns out that none of these concepts is fully satisfactory as the outcomes that are implied by any of these concepts are not invariant w.r.t. inessential changes in the game. In addition, these concepts do not satisfy a forward induction requirement. The chapter continues with formalizing these notions and it describes concepts of stable equilibria that do satisfy these properties. This set-valued concept is then related to the other refinements. In the final section of the chapter, the theory of equilibrium selection that was proposed by Harsanyi and Selten is described and applied to several examples. This theory selects a unique equilibrium for every game. Some drawbacks of this theory are noted and avenues for future research are indicated.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/B7P5P-4FD79WM-4/2/afd66a59999231b5f959c2333881e30d
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

as
in new window

This chapter was published in:
  • R.J. Aumann & S. Hart (ed.), 2002. "Handbook of Game Theory with Economic Applications," Handbook of Game Theory with Economic Applications, Elsevier, edition 1, volume 3, number 3.
  • This item is provided by Elsevier in its series Handbook of Game Theory with Economic Applications with number 3-41.
    Handle: RePEc:eee:gamchp:3-41
    Contact details of provider: Web page: http://www.elsevier.com/wps/find/bookseriesdescription.cws_home/BS_HE/description

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Kyle Bagwell & Garey Ramey, 1996. "Capacity, Entry, and Forward Induction," RAND Journal of Economics, The RAND Corporation, vol. 27(4), pages 660-680, Winter.
    2. Blume, Andreas, 1996. "Neighborhood Stability in Sender-Receiver Games," Games and Economic Behavior, Elsevier, vol. 13(1), pages 2-25, March.
    3. Aumann, Robert J. & Sorin, Sylvain, 1989. "Cooperation and bounded recall," Games and Economic Behavior, Elsevier, vol. 1(1), pages 5-39, March.
    4. Basu, Kaushik & Weibull, Jorgen W., 1991. "Strategy subsets closed under rational behavior," Economics Letters, Elsevier, vol. 36(2), pages 141-146, June.
    5. Bernheim, B. Douglas & Peleg, Bezalel & Whinston, Michael D., 1987. "Coalition-Proof Nash Equilibria I. Concepts," Journal of Economic Theory, Elsevier, vol. 42(1), pages 1-12, June.
    6. Kaushik Basu, 2010. "Strategic Irrationality in Extensive Games," Levine's Working Paper Archive 375, David K. Levine.
    7. Blume, A., 1991. "Equilibrium Refinement in Sender-Receiver Games," Working Papers 91-28, University of Iowa, Department of Economics.
    8. Binmore, Ken, 1988. "Modeling Rational Players: Part II," Economics and Philosophy, Cambridge University Press, vol. 4(01), pages 9-55, April.
    9. Aumann, Robert J., 1974. "Subjectivity and correlation in randomized strategies," Journal of Mathematical Economics, Elsevier, vol. 1(1), pages 67-96, March.
    10. Cho, In-Koo & Sobel, Joel, 1990. "Strategic stability and uniqueness in signaling games," Journal of Economic Theory, Elsevier, vol. 50(2), pages 381-413, April.
    11. Battigalli, Pierpaolo, 1997. "On Rationalizability in Extensive Games," Journal of Economic Theory, Elsevier, vol. 74(1), pages 40-61, May.
    12. Binmore, Ken, 1987. "Modeling Rational Players: Part I," Economics and Philosophy, Cambridge University Press, vol. 3(02), pages 179-214, October.
    13. Blume, Lawrence E & Zame, William R, 1994. "The Algebraic Geometry of Perfect and Sequential Equilibrium," Econometrica, Econometric Society, vol. 62(4), pages 783-94, July.
    14. Douglas Bernheim, B. & Ray, Debraj, 1989. "Collective dynamic consistency in repeated games," Games and Economic Behavior, Elsevier, vol. 1(4), pages 295-326, December.
    15. Banks, Jeffrey S. & Sobel, Joel., 1985. "Equilibrium Selection in Signaling Games," Working Papers 565, California Institute of Technology, Division of the Humanities and Social Sciences.
    16. Bernheim, B. Douglas & Whinston, Michael D., 1987. "Coalition-Proof Nash Equilibria II. Applications," Journal of Economic Theory, Elsevier, vol. 42(1), pages 13-29, June.
    17. Basu, Kaushik, 1990. "On the Non-existence of a Rationality Definition for Extensive Games," International Journal of Game Theory, Springer, vol. 19(1), pages 33-44.
    18. Aumann, Robert & Brandenburger, Adam, 1995. "Epistemic Conditions for Nash Equilibrium," Econometrica, Econometric Society, vol. 63(5), pages 1161-80, September.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:gamchp:3-41. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.