IDEAS home Printed from https://ideas.repec.org/p/cla/levarc/661465000000000203.html
   My bibliography  Save this paper

Axiomatic Equilibrium Selection For Generic Two-Player Games

Author

Listed:
  • SRIHARI GOVINDAN
  • ROBERT WILSON

Abstract

We apply three axioms adapted from decision theory to refinements of the Nash equilibria of games with perfect recall that select connected closed sub- sets called solutions. No player uses a weakly dominated strategy in an equilibrium in a solution. Each solution contains a quasi-perfect equilibrium and thus a sequential equilibrium in strategies that provide conditionally admissible optimal continuations from information sets. A refinement is immune to embedding a game in a larger game with additional players provided the original players' strategies and payoffs are preserved, i.e. solutions of a game are the same as those induced by the solutions of any larger game in which it is embedded. For games with two players and generic payoffs, we prove that these axioms characterize each solution as an essential component of equilibria in undominated strategies, and thus a stable set as defined by Mertens (1989).
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Srihari Govindan & Robert Wilson, 2010. "Axiomatic Equilibrium Selection For Generic Two-Player Games," Levine's Working Paper Archive 661465000000000203, David K. Levine.
  • Handle: RePEc:cla:levarc:661465000000000203
    as

    Download full text from publisher

    File URL: http://www.dklevine.com/archive/refs4661465000000000203.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mailath, George J & Samuelson, Larry & Swinkels, Jeroen M, 1993. "Extensive Form Reasoning in Normal Form Games," Econometrica, Econometric Society, vol. 61(2), pages 273-302, March.
    2. Srihari Govindan & Jean-François Mertens, 2004. "An equivalent definition of stable Equilibria," International Journal of Game Theory, Springer;Game Theory Society, vol. 32(3), pages 339-357, June.
    3. Srihari Govindan & Robert Wilson, 2002. "Maximal stable sets of two-player games," International Journal of Game Theory, Springer;Game Theory Society, vol. 30(4), pages 557-566.
    4. Reny, Philip J, 1992. "Backward Induction, Normal Form Perfection and Explicable Equilibria," Econometrica, Econometric Society, vol. 60(3), pages 627-649, May.
    5. Reny Philip J., 1993. "Common Belief and the Theory of Games with Perfect Information," Journal of Economic Theory, Elsevier, vol. 59(2), pages 257-274, April.
    6. Srihari Govindan & Robert Wilson, 2009. "On Forward Induction," Econometrica, Econometric Society, vol. 77(1), pages 1-28, January.
    7. Govindan, Srihari & Wilson, Robert B., 2006. "Sufficient conditions for stable equilibria," Theoretical Economics, Econometric Society, vol. 1(2), pages 167-206, June.
    8. Van Damme, Eric, 2002. "Strategic equilibrium," Handbook of Game Theory with Economic Applications,in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 41, pages 1521-1596 Elsevier.
    9. Jean-François Mertens, 1989. "Stable Equilibria---A Reformulation," Mathematics of Operations Research, INFORMS, vol. 14(4), pages 575-625, November.
    10. Mertens, Jean-Francois, 1992. "The small worlds axiom for stable equilibria," Games and Economic Behavior, Elsevier, vol. 4(4), pages 553-564, October.
    11. Srihari Govindan & Robert Wilson, 2009. "Axiomatic Theory of Equilibrium Selection for Games with Two Players, Perfect Information, and Generic Payoffs," Levine's Working Paper Archive 814577000000000125, David K. Levine.
    12. Govindan, Srihari & Wilson, Robert, 2001. "Direct Proofs of Generic Finiteness of Nash Equilibrium Outcomes," Econometrica, Econometric Society, vol. 69(3), pages 765-769, May.
    13. Philip J. Reny, 1992. "Rationality in Extensive-Form Games," Journal of Economic Perspectives, American Economic Association, vol. 6(4), pages 103-118, Fall.
    14. Srihari Govindan & Robert Wilson, 2008. "Metastable Equilibria," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 787-820, November.
    15. van Damme, E.E.C., 1984. "A relation between perfect equilibria in extensive form games and proper equilibria in normal form games," Other publications TiSEM 3734d89e-fd5c-4c80-a230-5, Tilburg University, School of Economics and Management.
    16. Srihari Govindan & Tilman Klumpp, 2003. "Perfect equilibrium and lexicographic beliefs," International Journal of Game Theory, Springer;Game Theory Society, vol. 31(2), pages 229-243.
    17. Kohlberg, Elon & Mertens, Jean-Francois, 1986. "On the Strategic Stability of Equilibria," Econometrica, Econometric Society, vol. 54(5), pages 1003-1037, September.
    18. Koller, Daphne & Megiddo, Nimrod, 1992. "The complexity of two-person zero-sum games in extensive form," Games and Economic Behavior, Elsevier, vol. 4(4), pages 528-552, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yildiz, Muhamet, 2015. "Invariance to representation of information," Games and Economic Behavior, Elsevier, vol. 94(C), pages 142-156.
    2. Carlos Pimienta & Jianfei Shen, 2014. "On the equivalence between (quasi-)perfect and sequential equilibria," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(2), pages 395-402, May.
    3. Man, Priscilla T.Y., 2012. "Forward induction equilibrium," Games and Economic Behavior, Elsevier, vol. 75(1), pages 265-276.
    4. Sun, Lan, 2016. "Hypothesis testing equilibrium in signaling games," Center for Mathematical Economics Working Papers 557, Center for Mathematical Economics, Bielefeld University.

    More about this item

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cla:levarc:661465000000000203. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (David K. Levine). General contact details of provider: http://www.dklevine.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.