IDEAS home Printed from https://ideas.repec.org/a/inm/ormoor/v41y2016i1p278-292.html
   My bibliography  Save this article

Where Strategic and Evolutionary Stability Depart—A Study of Minimal Diversity Games

Author

Listed:
  • Dieter Balkenborg

    (Department of Economics, University of Exeter, Exeter EX4 4PU, United Kingdom)

  • Dries Vermeulen

    (Department of Quantitative Economics, University Maastricht, 6200 MD Maastricht, Netherlands)

Abstract

A minimal diversity game is an n player strategic form game in which each player has m pure strategies at his disposal. The payoff to each player is always 1, unless all players select the same pure strategy, in which case, all players receive zero payoff. Such a game has a unique isolated completely mixed Nash equilibrium in which each player plays each strategy with equal probability, and a connected component of Nash equilibria consisting of those strategy profiles in which each player receives payoff 1. The Pareto superior component is shown to be asymptotically stable under a wide class of evolutionary dynamics, while the isolated equilibrium is not. In contrast, the isolated equilibrium is strategically stable, while the strategic stability of the Pareto-efficient component depends on the dimension of the component, and hence on the number of players, and the number of pure strategies.

Suggested Citation

  • Dieter Balkenborg & Dries Vermeulen, 2016. "Where Strategic and Evolutionary Stability Depart—A Study of Minimal Diversity Games," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 278-292, February.
  • Handle: RePEc:inm:ormoor:v:41:y:2016:i:1:p:278-292
    DOI: 10.1287/moor.2015.0727
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/moor.2015.0727
    Download Restriction: no

    File URL: https://libkey.io/10.1287/moor.2015.0727?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. John C. Harsanyi & Reinhard Selten, 1988. "A General Theory of Equilibrium Selection in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262582384, December.
    2. Srihari Govindan & Robert Wilson, 2012. "Axiomatic Equilibrium Selection for Generic Two‐Player Games," Econometrica, Econometric Society, vol. 80(4), pages 1639-1699, July.
    3. Guth, Werner & Huck, Steffen & Muller, Wieland, 2001. "The Relevance of Equal Splits in Ultimatum Games," Games and Economic Behavior, Elsevier, vol. 37(1), pages 161-169, October.
    4. DeMichelis, Stefano & Germano, Fabrizio, 2000. "On the Indices of Zeros of Nash Fields," Journal of Economic Theory, Elsevier, vol. 94(2), pages 192-217, October.
    5. Jean-François Mertens, 1989. "Stable Equilibria---A Reformulation," Mathematics of Operations Research, INFORMS, vol. 14(4), pages 575-625, November.
    6. M. Kojima & A. Okada & S. Shindoh, 1985. "Strongly Stable Equilibrium Points of N -Person Noncooperative Games," Mathematics of Operations Research, INFORMS, vol. 10(4), pages 650-663, November.
    7. Sergiu Hart, 2008. "Discrete Colonel Blotto and General Lotto games," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(3), pages 441-460, March.
    8. MERTENS, Jean-François, 1989. "Stable equilibria - a reformulation. Part I. Definition and basic properties," LIDAM Reprints CORE 866, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. McKelvey, Richard D & Palfrey, Thomas R, 1992. "An Experimental Study of the Centipede Game," Econometrica, Econometric Society, vol. 60(4), pages 803-836, July.
    10. Hillas, John, 1990. "On the Definition of the Strategic Stability of Equilibria," Econometrica, Econometric Society, vol. 58(6), pages 1365-1390, November.
    11. Ritzberger, Klaus, 1994. "The Theory of Normal Form Games form the Differentiable Viewpoint," International Journal of Game Theory, Springer;Game Theory Society, vol. 23(3), pages 207-236.
    12. Swinkels Jeroen M., 1993. "Adjustment Dynamics and Rational Play in Games," Games and Economic Behavior, Elsevier, vol. 5(3), pages 455-484, July.
    13. Kohlberg, Elon & Mertens, Jean-Francois, 1986. "On the Strategic Stability of Equilibria," Econometrica, Econometric Society, vol. 54(5), pages 1003-1037, September.
    14. John Hillas & Mathijs Jansen & Jos Potters & Dries Vermeulen, 2001. "On the Relation Among Some Definitions of Strategic Stability," Mathematics of Operations Research, INFORMS, vol. 26(3), pages 611-635, August.
    15. Jean-François Mertens, 1991. "Stable Equilibria—A Reformulation. Part II. Discussion of the Definition, and Further Results," Mathematics of Operations Research, INFORMS, vol. 16(4), pages 694-753, November.
    16. Hillas, John & Jansen, Mathijis & Potters, Jos, 2001. "On The Relation Among Some Definitions Of Strategic Stability," Working Papers 137, Department of Economics, The University of Auckland.
    17. Demichelis, Stefano & Ritzberger, Klaus, 2003. "From evolutionary to strategic stability," Journal of Economic Theory, Elsevier, vol. 113(1), pages 51-75, November.
    18. Balkenborg, Dieter & Schlag, Karl H., 2007. "On the evolutionary selection of sets of Nash equilibria," Journal of Economic Theory, Elsevier, vol. 133(1), pages 295-315, March.
    19. Swinkels, Jeroen M., 1992. "Evolution and strategic stability: From maynard smith to kohlberg and mertens," Journal of Economic Theory, Elsevier, vol. 57(2), pages 333-342, August.
    20. DE MICHELIS, Stefano, 2000. "On the index and asymptotic stability of dynamics," LIDAM Discussion Papers CORE 2000018, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    21. Monderer, Dov & Shapley, Lloyd S., 1996. "Potential Games," Games and Economic Behavior, Elsevier, vol. 14(1), pages 124-143, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Satoru Takahashi, 2020. "Non-equivalence between all and canonical elaborations," The Japanese Economic Review, Springer, vol. 71(1), pages 43-57, January.
    2. Man, Priscilla T.Y., 2012. "Efficiency and stochastic stability in normal form games," Games and Economic Behavior, Elsevier, vol. 76(1), pages 272-284.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Demichelis, Stefano & Ritzberger, Klaus, 2003. "From evolutionary to strategic stability," Journal of Economic Theory, Elsevier, vol. 113(1), pages 51-75, November.
    2. Norman, Thomas W.L., 2018. "Inefficient stage Nash is not stable," Journal of Economic Theory, Elsevier, vol. 178(C), pages 275-293.
    3. Srihari Govindan & Robert Wilson, 2008. "Metastable Equilibria," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 787-820, November.
    4. Stefano Demichelis & Klaus Ritzberger & Jeroen M. Swinkels, 2004. "The simple geometry of perfect information games," International Journal of Game Theory, Springer;Game Theory Society, vol. 32(3), pages 315-338, June.
    5. Govindan, Srihari & Wilson, Robert B., 2007. "Stable Outcomes of Generic Games in Extensive Form," Research Papers 1933r, Stanford University, Graduate School of Business.
    6. Satoru Takahashi & Olivier Tercieux, 2020. "Robust equilibrium outcomes in sequential games under almost common certainty of payoffs," PSE-Ecole d'économie de Paris (Postprint) halshs-02875199, HAL.
    7. Satoru Takahashi & Olivier Tercieux, 2020. "Robust equilibrium outcomes in sequential games under almost common certainty of payoffs," Post-Print halshs-02875199, HAL.
    8. Hauk, Esther & Hurkens, Sjaak, 2002. "On Forward Induction and Evolutionary and Strategic Stability," Journal of Economic Theory, Elsevier, vol. 106(1), pages 66-90, September.
    9. Carlos Alós-Ferrer & Klaus Ritzberger, 2020. "Reduced normal forms are not extensive forms," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 8(2), pages 281-288, October.
    10. Geir B. Asheim & Mark Voorneveld & Jörgen W. Weibull, 2016. "Epistemically Robust Strategy Subsets," Games, MDPI, vol. 7(4), pages 1-16, November.
    11. John Hillas & Mathijs Jansen & Jos Potters & Dries Vermeulen, 2001. "On the Relation Among Some Definitions of Strategic Stability," Mathematics of Operations Research, INFORMS, vol. 26(3), pages 611-635, August.
    12. Anesi, Vincent, 2010. "Noncooperative foundations of stable sets in voting games," Games and Economic Behavior, Elsevier, vol. 70(2), pages 488-493, November.
    13. Dieter Balkenborg & Josef Hofbauer & Christoph Kuzmics, 2015. "The refined best-response correspondence in normal form games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(1), pages 165-193, February.
    14. Peter Wikman, 2022. "Nash blocks," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(1), pages 29-51, March.
    15. Vida, Péter & Honryo, Takakazu, 2021. "Strategic stability of equilibria in multi-sender signaling games," Games and Economic Behavior, Elsevier, vol. 127(C), pages 102-112.
    16. Demichelis, Stefano & Germano, Fabrizio, 2002. "On (un)knots and dynamics in games," Games and Economic Behavior, Elsevier, vol. 41(1), pages 46-60, October.
    17. Sandholm, William H., 2015. "Population Games and Deterministic Evolutionary Dynamics," Handbook of Game Theory with Economic Applications,, Elsevier.
    18. Takahashi, Satoru & Tercieux, Olivier, 2020. "Robust equilibrium outcomes in sequential games under almost common certainty of payoffs," Journal of Economic Theory, Elsevier, vol. 188(C).
    19. DeMichelis, Stefano & Germano, Fabrizio, 2000. "On the Indices of Zeros of Nash Fields," Journal of Economic Theory, Elsevier, vol. 94(2), pages 192-217, October.
    20. Meroni, Claudia & Pimienta, Carlos, 2017. "The structure of Nash equilibria in Poisson games," Journal of Economic Theory, Elsevier, vol. 169(C), pages 128-144.

    More about this item

    Keywords

    strategic form games; strategic stability; evolutionary stability;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D44 - Microeconomics - - Market Structure, Pricing, and Design - - - Auctions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormoor:v:41:y:2016:i:1:p:278-292. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/inforea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Matthew Walls (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.