IDEAS home Printed from https://ideas.repec.org/a/spr/joecth/v71y2021i2d10.1007_s00199-020-01259-z.html
   My bibliography  Save this article

The algebraic geometry of perfect and sequential equilibrium: an extension

Author

Listed:
  • Xiao Luo

    (National University of Singapore)

  • Xuewen Qian

    (University of Nottingham Ningbo)

  • Yang Sun

    (Sichuan University)

Abstract

We extend the generic equivalence result of Blume and Zame (Econometrica 62:783–794, 1994) to a broader context of perfectly and sequentially rational strategic behavior (including equilibrium and nonequilibrium behavior) through a unifying solution concept of “mutually acceptable course of action” (MACA) proposed by Greenberg et al. (Econ Theory 40:91–112, 2009. https://doi.org/10.1007/s00199-008-0349-5 ). As a by-product, we show, in the affirmative, Dekel et al.’s (J Econ Theory 89:165–185, 1999) conjecture on the generic equivalence between the sequential and perfect versions of rationalizable self-confirming equilibrium.

Suggested Citation

  • Xiao Luo & Xuewen Qian & Yang Sun, 2021. "The algebraic geometry of perfect and sequential equilibrium: an extension," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(2), pages 579-601, March.
  • Handle: RePEc:spr:joecth:v:71:y:2021:i:2:d:10.1007_s00199-020-01259-z
    DOI: 10.1007/s00199-020-01259-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00199-020-01259-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00199-020-01259-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rubinstein Ariel & Wolinsky Asher, 1994. "Rationalizable Conjectural Equilibrium: Between Nash and Rationalizability," Games and Economic Behavior, Elsevier, vol. 6(2), pages 299-311, March.
    2. Carlos Pimienta & Jianfei Shen, 2014. "On the equivalence between (quasi-)perfect and sequential equilibria," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(2), pages 395-402, May.
    3. Kreps, David M & Wilson, Robert, 1982. "Sequential Equilibria," Econometrica, Econometric Society, vol. 50(4), pages 863-894, July.
    4. Dekel, Eddie & Fudenberg, Drew & Levine, David K., 1999. "Payoff Information and Self-Confirming Equilibrium," Journal of Economic Theory, Elsevier, vol. 89(2), pages 165-185, December.
    5. van Damme, Eric, 1998. "On the State of the Art in Game Theory: An Interview with Robert Aumann," Games and Economic Behavior, Elsevier, vol. 24(1-2), pages 181-210, July.
    6. Perea y Monsuwe, Andres & Jansen, Mathijs & Peters, Hans, 1997. "Characterization of Consistent Assessments in Extensive Form Games," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 238-252, October.
    7. Pierpaolo Battigalli & Simone Cerreia-Vioglio & Fabio Maccheroni & Massimo Marinacci, 2015. "Self-Confirming Equilibrium and Model Uncertainty," American Economic Review, American Economic Association, vol. 105(2), pages 646-677, February.
    8. Joseph Greenberg & Sudheer Gupta & Xiao Luo, 2009. "Mutually acceptable courses of action," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 40(1), pages 91-112, July.
    9. Asheim, Geir B. & Perea, Andres, 2005. "Sequential and quasi-perfect rationalizability in extensive games," Games and Economic Behavior, Elsevier, vol. 53(1), pages 15-42, October.
    10. Joseph Halpern, 2009. "A nonstandard characterization of sequential equilibrium, perfect equilibrium, and proper equilibrium," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(1), pages 37-49, March.
    11. Srihari Govindan & Robert Wilson, 2012. "Axiomatic Equilibrium Selection for Generic Two‐Player Games," Econometrica, Econometric Society, vol. 80(4), pages 1639-1699, July.
    12. Fudenberg, Drew & Levine, David K., 2009. "Self-confirming equilibrium and the Lucas critique," Journal of Economic Theory, Elsevier, vol. 144(6), pages 2354-2371, November.
    13. Govindan, Srihari & Wilson, Robert B., 2006. "Sufficient conditions for stable equilibria," Theoretical Economics, Econometric Society, vol. 1(2), pages 167-206, June.
    14. Pearce, David G, 1984. "Rationalizable Strategic Behavior and the Problem of Perfection," Econometrica, Econometric Society, vol. 52(4), pages 1029-1050, July.
    15. Drew Fudenberg & David K. Levine, 2006. "Superstition and Rational Learning," American Economic Review, American Economic Association, vol. 96(3), pages 630-651, June.
    16. Voorneveld, Mark, 2005. "Persistent retracts and preparation," Games and Economic Behavior, Elsevier, vol. 51(1), pages 228-232, April.
    17. Govindan, Srihari & Wilson, Robert, 2001. "Direct Proofs of Generic Finiteness of Nash Equilibrium Outcomes," Econometrica, Econometric Society, vol. 69(3), pages 765-769, May.
    18. Kubler, Felix & Schmedders, Karl, 2010. "Competitive equilibria in semi-algebraic economies," Journal of Economic Theory, Elsevier, vol. 145(1), pages 301-330, January.
    19. Bernheim, B Douglas, 1984. "Rationalizable Strategic Behavior," Econometrica, Econometric Society, vol. 52(4), pages 1007-1028, July.
    20. Carlos Pimienta & Cristian Litan, 2008. "Conditions for equivalence between sequentiality and subgame perfection," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 35(3), pages 539-553, June.
    21. Perea, Andrés, 2018. "Why forward induction leads to the backward induction outcome: A new proof for Battigalli's theorem," Games and Economic Behavior, Elsevier, vol. 110(C), pages 120-138.
    22. Fudenberg, Drew & Levine, David K, 1993. "Self-Confirming Equilibrium," Econometrica, Econometric Society, vol. 61(3), pages 523-545, May.
    23. Gaurab Aryal & Ronald Stauber, 2014. "Trembles in extensive games with ambiguity averse players," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 57(1), pages 1-40, September.
    24. Martin J. Osborne & Ariel Rubinstein, 1994. "A Course in Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262650401.
    25. Fudenberg, Drew & Kamada, Yuichiro, 2015. "Rationalizable partition-confirmed equilibrium," Theoretical Economics, Econometric Society, vol. 10(3), September.
    26. Dekel, Eddie & Fudenberg, Drew & Levine, David K., 2002. "Subjective Uncertainty over Behavior Strategies: A Correction," Journal of Economic Theory, Elsevier, vol. 104(2), pages 473-478, June.
    27. Perea, Andres, 2002. "A note on the one-deviation property in extensive form games," Games and Economic Behavior, Elsevier, vol. 40(2), pages 322-338, August.
    28. Ritzberger, Klaus, 1994. "The Theory of Normal Form Games form the Differentiable Viewpoint," International Journal of Game Theory, Springer;Game Theory Society, vol. 23(3), pages 207-236.
    29. Demichelis, Stefano & Ritzberger, Klaus, 2003. "From evolutionary to strategic stability," Journal of Economic Theory, Elsevier, vol. 113(1), pages 51-75, November.
    30. Govindan, Srihari & McLennan, Andrew, 2001. "On the Generic Finiteness of Equilibrium Outcome Distributions in Game Forms," Econometrica, Econometric Society, vol. 69(2), pages 455-471, March.
    31. Kohlberg, Elon & Mertens, Jean-Francois, 1986. "On the Strategic Stability of Equilibria," Econometrica, Econometric Society, vol. 54(5), pages 1003-1037, September.
    32. Esponda, Ignacio, 2013. "Rationalizable conjectural equilibrium: A framework for robust predictions," Theoretical Economics, Econometric Society, vol. 8(2), May.
    33. Shimoji, Makoto, 2004. "On the equivalence of weak dominance and sequential best response," Games and Economic Behavior, Elsevier, vol. 48(2), pages 385-402, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dekel, Eddie & Siniscalchi, Marciano, 2015. "Epistemic Game Theory," Handbook of Game Theory with Economic Applications,, Elsevier.
    2. Joseph Greenberg & Sudheer Gupta & Xiao Luo, 2009. "Mutually acceptable courses of action," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 40(1), pages 91-112, July.
    3. Schipper, Burkhard C, 2018. "Discovery and Equilibrium in Games with Unawareness," MPRA Paper 86300, University Library of Munich, Germany.
    4. Sheng-Chieh Huang & Xiao Luo, 2008. "Stability, sequential rationality, and subgame consistency," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 34(2), pages 309-329, February.
    5. Joseph Greenberg & Sudheer Gupta & Xiao Luo, 2003. "Towering over Babel: Worlds Apart but Acting Together," IEAS Working Paper : academic research 03-A009, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    6. Fudenberg, Drew & Kamada, Yuichiro, 2018. "Rationalizable partition-confirmed equilibrium with heterogeneous beliefs," Games and Economic Behavior, Elsevier, vol. 109(C), pages 364-381.
    7. Battigalli, P. & Catonini, E. & Lanzani, G. & Marinacci, M., 2019. "Ambiguity attitudes and self-confirming equilibrium in sequential games," Games and Economic Behavior, Elsevier, vol. 115(C), pages 1-29.
    8. Perea, Andrés, 2014. "Belief in the opponentsʼ future rationality," Games and Economic Behavior, Elsevier, vol. 83(C), pages 231-254.
    9. Catonini, Emiliano, 2019. "Rationalizability and epistemic priority orderings," Games and Economic Behavior, Elsevier, vol. 114(C), pages 101-117.
    10. Battigalli, Pierpaolo & Corrao, Roberto & Dufwenberg, Martin, 2019. "Incorporating belief-dependent motivation in games," Journal of Economic Behavior & Organization, Elsevier, vol. 167(C), pages 185-218.
    11. Battigalli Pierpaolo & Siniscalchi Marciano, 2003. "Rationalization and Incomplete Information," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 3(1), pages 1-46, June.
    12. Gilli, Mario, 1999. "On Non-Nash Equilibria," Games and Economic Behavior, Elsevier, vol. 27(2), pages 184-203, May.
    13. Takahashi, Satoru & Tercieux, Olivier, 2020. "Robust equilibrium outcomes in sequential games under almost common certainty of payoffs," Journal of Economic Theory, Elsevier, vol. 188(C).
    14. Asheim, Geir B. & Perea, Andres, 2005. "Sequential and quasi-perfect rationalizability in extensive games," Games and Economic Behavior, Elsevier, vol. 53(1), pages 15-42, October.
    15. Srihari Govindan & Robert Wilson, 2009. "On Forward Induction," Econometrica, Econometric Society, vol. 77(1), pages 1-28, January.
    16. Perea, Andres, 2002. "A note on the one-deviation property in extensive form games," Games and Economic Behavior, Elsevier, vol. 40(2), pages 322-338, August.
    17. Dieter Balkenborg & Josef Hofbauer & Christoph Kuzmics, 2009. "The Refined Best-Response Correspondence and Backward Induction," Levine's Working Paper Archive 814577000000000248, David K. Levine.
    18. Carlos Alós-Ferrer & Klaus Ritzberger, 2020. "Reduced normal forms are not extensive forms," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 8(2), pages 281-288, October.
    19. Heifetz, Aviad & Meier, Martin & Schipper, Burkhard C., 2013. "Dynamic unawareness and rationalizable behavior," Games and Economic Behavior, Elsevier, vol. 81(C), pages 50-68.
    20. Geir B. Asheim & Mark Voorneveld & Jörgen W. Weibull, 2016. "Epistemically Robust Strategy Subsets," Games, MDPI, Open Access Journal, vol. 7(4), pages 1-16, November.

    More about this item

    Keywords

    Extensive forms; Generic payoffs; Perfect rationality; Sequential rationality; MACA; Semi-algebraic sets;
    All these keywords.

    JEL classification:

    • C70 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - General
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joecth:v:71:y:2021:i:2:d:10.1007_s00199-020-01259-z. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.