IDEAS home Printed from https://ideas.repec.org/a/spr/joecth/v8y1996i1p103-122.html

Non-computable strategies and discounted repeated games

Author

Listed:
  • William R. Zame

    (Department of Economics, UCLA, Los Angeles, CA 90024, USA)

  • John H. Nachbar

    (Department of Economics, Washington University, St. Louis, MO 63130, USA)

Abstract

A number of authors have used formal models of computation to capture the idea of "bounded rationality" in repeated games. Most of this literature has used computability by a finite automaton as the standard. A conceptual difficulty with this standard is that the decision problem is not "closed." That is, for every strategy implementable by an automaton, there is some best response implementable by an automaton, but there may not exist any algorithm for finding such a best response that can be implemented by an automaton. However, such algorithms can always be implemented by a Turing machine, the most powerful formal model of computation. In this paper, we investigate whether the decision problem can be closed by adopting Turing machines as the standard of computability. The answer we offer is negative. Indeed, for a large class of discounted repeated games (including the repeated Prisoner's Dilemma) there exist strategies implementable by a Turing machine for which no best response is implementable by a Turing machine.

Suggested Citation

  • William R. Zame & John H. Nachbar, 1996. "Non-computable strategies and discounted repeated games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 8(1), pages 103-122.
  • Handle: RePEc:spr:joecth:v:8:y:1996:i:1:p:103-122
    Note: Received: April 11, 1995
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jakub Dargaj & Jakob Grue Simonsen, 2020. "A Complete Characterization of Infinitely Repeated Two-Player Games having Computable Strategies with no Computable Best Response under Limit-of-Means Payoff," Papers 2005.13921, arXiv.org, revised Jun 2020.
    2. Richter, Marcel K. & Wong, Kam-Chau, 1999. "Computable preference and utility," Journal of Mathematical Economics, Elsevier, vol. 32(3), pages 339-354, November.
    3. Conitzer, Vincent & Sandholm, Tuomas, 2008. "New complexity results about Nash equilibria," Games and Economic Behavior, Elsevier, vol. 63(2), pages 621-641, July.
    4. Stephen J. Decanio, 1999. "Estimating The Non‐Environmental Consequences Of Greenhouse Gas Reductions Is Harder Than You Think," Contemporary Economic Policy, Western Economic Association International, vol. 17(3), pages 279-295, July.
    5. Ying-Fang Kao & Ragupathy Venkatachalam, 2021. "Human and Machine Learning," Computational Economics, Springer;Society for Computational Economics, vol. 57(3), pages 889-909, March.
    6. Dargaj, Jakub & Simonsen, Jakob Grue, 2023. "A complete characterization of infinitely repeated two-player games having computable strategies with no computable best response under limit-of-means payoff," Journal of Economic Theory, Elsevier, vol. 213(C).

    More about this item

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • O11 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Macroeconomic Analyses of Economic Development
    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joecth:v:8:y:1996:i:1:p:103-122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.