IDEAS home Printed from
   My bibliography  Save this paper

Volatility Spillovers and Heavy Tails: A Large t-Vector AutoRegressive Approach


  • Luca Barbaglia
  • Christophe Croux
  • Ines Wilms


Volatility is a key measure of risk in financial analysis. The high volatility of one financial asset today could affect the volatility of another asset tomorrow. These lagged effects among volatilities - which we call volatility spillovers - are studied using the Vector AutoRegressive (VAR) model. We account for the possible fat-tailed distribution of the VAR model errors using a VAR model with errors following a multivariate Student t-distribution with unknown degrees of freedom. Moreover, we study volatility spillovers among a large number of assets. To this end, we use penalized estimation of the VAR model with t-distributed errors. We study volatility spillovers among energy, biofuel and agricultural commodities and reveal bidirectional volatility spillovers between energy and biofuel, and between energy and agricultural commodities.

Suggested Citation

  • Luca Barbaglia & Christophe Croux & Ines Wilms, 2017. "Volatility Spillovers and Heavy Tails: A Large t-Vector AutoRegressive Approach," Papers 1708.02073,
  • Handle: RePEc:arx:papers:1708.02073

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Markku Lanne & Henri Nyberg, 2016. "Generalized Forecast Error Variance Decomposition for Linear and Nonlinear Multivariate Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(4), pages 595-603, August.
    2. Anthony N. Rezitis, 2015. "The relationship between agricultural commodity prices, crude oil prices and US dollar exchange rates: a panel VAR approach and causality analysis," International Review of Applied Economics, Taylor & Francis Journals, vol. 29(3), pages 403-434, May.
    3. Nikolaus Hautsch & Julia Schaumburg & Melanie Schienle, 2015. "Financial Network Systemic Risk Contributions," Review of Finance, European Finance Association, vol. 19(2), pages 685-738.
    4. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    5. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
    6. Ole E. Barndorff-Nielsen & Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280.
    7. Diebold, Francis X. & Yilmaz, Kamil, 2015. "Financial and Macroeconomic Connectedness: A Network Approach to Measurement and Monitoring," OUP Catalogue, Oxford University Press, number 9780199338306.
    8. Mert Demirer & Francis X. Diebold & Laura Liu & Kamil Yilmaz, 2015. "Estimating Global Bank Network Connectedness," Koç University-TUSIAD Economic Research Forum Working Papers 1512, Koc University-TUSIAD Economic Research Forum.
    9. repec:wly:japmet:v:32:y:2017:i:1:p:140-158 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1708.02073. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.