IDEAS home Printed from https://ideas.repec.org/p/zbw/bubdps/062019.html
   My bibliography  Save this paper

Connectedness between G10 currencies: Searching for the causal structure

Author

Listed:
  • Bettendorf, Timo
  • Heinlein, Reinhold

Abstract

This paper presents a new approach for modelling the connectedness between asset returns. We adapt the measure of Diebold and Y¸lmaz (2014), which is based on the forecast error variance decomposition of a VAR model. However, their connectedness measure hinges on critical assumptions with regard to the variance-covariance matrix of the error terms. We propose to use a more agnostic empirical approach, based on a machine learning algorithm, to identify the contemporaneous structure. In a Monte Carlo study we compare the different connectedness measures and discuss their advantages and disadvantages. In an empirical application we analyse the connectedness between the G10 currencies. Our results suggest that the US dollar as well as the Norwegian krone are the most independent currencies in our sample. By contrast, the Swiss franc and New Zealand dollar have a negligible impact on other currencies. Moreover, a cluster analysis suggests that the currencies can be divided into three groups, which we classify as: commodity currencies, European currencies and safe haven/carry trade financing currencies.

Suggested Citation

  • Bettendorf, Timo & Heinlein, Reinhold, 2019. "Connectedness between G10 currencies: Searching for the causal structure," Discussion Papers 06/2019, Deutsche Bundesbank.
  • Handle: RePEc:zbw:bubdps:062019
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/192934/1/1049244249.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jeffrey Frankel & Daniel Xie, 2010. "Estimation of De Facto Flexibility Parameter and Basket Weights in Evolving Exchange Rate Regimes," American Economic Review, American Economic Association, vol. 100(2), pages 568-572, May.
    2. Jeffrey Frankel & Shang-Jin Wei, 2008. "Estimation of De Facto Exchange Rate Regimes: Synthesis of the Techniques for Inferring Flexibility and Basket Weights," IMF Staff Papers, Palgrave Macmillan, vol. 55(3), pages 384-416, July.
    3. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    4. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    5. Mert Demirer & Francis X. Diebold & Laura Liu & Kamil Yilmaz, 2018. "Estimating global bank network connectedness," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(1), pages 1-15, January.
    6. Stefan Klößner & Sven Wagner, 2014. "Exploring All Var Orderings For Calculating Spillovers? Yes, We Can!—A Note On Diebold And Yilmaz (2009)," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 172-179, January.
    7. Matthew Greenwood-Nimmo & Viet Hoang Nguyen & Yongcheol Shin, 2017. "What’s Mine Is Yours: Sovereign Risk Transmission during the European Debt Crisis," Melbourne Institute Working Paper Series wp2017n17, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
    8. Diebold, Francis X. & Yilmaz, Kamil, 2015. "Financial and Macroeconomic Connectedness: A Network Approach to Measurement and Monitoring," OUP Catalogue, Oxford University Press, number 9780199338306.
    9. Arash Aloosh & Geert Bekaert, 2022. "Currency Factors," Management Science, INFORMS, vol. 68(6), pages 4042-4064, June.
    10. Selva Demiralp & Kevin D. Hoover & Stephen J. Perez, 2008. "A Bootstrap Method for Identifying and Evaluating a Structural Vector Autoregression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(4), pages 509-533, August.
    11. Markku Lanne & Henri Nyberg, 2016. "Generalized Forecast Error Variance Decomposition for Linear and Nonlinear Multivariate Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(4), pages 595-603, August.
    12. Matteo Barigozzi & Christian Brownlees, 2019. "NETS: Network estimation for time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 347-364, April.
    13. Greenwood-Nimmo, Matthew & Nguyen, Viet Hoang & Rafferty, Barry, 2016. "Risk and return spillovers among the G10 currencies," Journal of Financial Markets, Elsevier, vol. 31(C), pages 43-62.
    14. Hossfeld, Oliver & MacDonald, Ronald, 2015. "Carry funding and safe haven currencies: A threshold regression approach," Journal of International Money and Finance, Elsevier, vol. 59(C), pages 185-202.
    15. Selva Demiralp & Kevin D. Hoover, 2003. "Searching for the Causal Structure of a Vector Autoregression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 745-767, December.
    16. Kilian,Lutz & Lütkepohl,Helmut, 2018. "Structural Vector Autoregressive Analysis," Cambridge Books, Cambridge University Press, number 9781107196575, September.
    17. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    18. Kalisch, Markus & Mächler, Martin & Colombo, Diego & Maathuis, Marloes H. & Bühlmann, Peter, 2012. "Causal Inference Using Graphical Models with the R Package pcalg," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(i11).
    19. Selva Demiralp & Kevin D. Hoover, 2003. "Searching for the Causal Structure of a Vector Autoregression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 745-767, December.
    20. Fischer, Christoph, 2016. "Determining global currency bloc equilibria: An empirical strategy based on estimates of anchor currency choice," Journal of International Money and Finance, Elsevier, vol. 64(C), pages 214-238.
    21. repec:iae:iaewps:wp2016n4 is not listed on IDEAS
    22. Peter Spirtes & Clark Glymour & Richard Scheines, 2001. "Causation, Prediction, and Search, 2nd Edition," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262194406, April.
    23. Mr. Jorge A Chan-Lau, 2017. "Variance Decomposition Networks: Potential Pitfalls and a Simple Solution," IMF Working Papers 2017/107, International Monetary Fund.
    24. Selva Demiralp & Kevin Hoover & Stephen Perez, 2014. "Still puzzling: evaluating the price puzzle in an empirically identified structural vector autoregression," Empirical Economics, Springer, vol. 46(2), pages 701-731, March.
    25. De Santis, Roberto A. & Zimic, Srečko, 2017. "Spillovers among sovereign debt markets: identification by absolute magnitude restrictions," Working Paper Series 2055, European Central Bank.
    26. Reinhold Heinlein & Hans-Martin Krolzig, 2012. "Effects of Monetary Policy on the US Dollar/UK Pound Exchange Rate. Is There a “Delayed Overshooting Puzzle”?," Review of International Economics, Wiley Blackwell, vol. 20(3), pages 443-467, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pavel Aleksandrovich Minakir & Dmitriy Aleksandrovich Izotov, 2022. "World Money in Time and Space: A Blow to the Dollar or a Blow by the Dollar?," Spatial Economics=Prostranstvennaya Ekonomika, Economic Research Institute, Far Eastern Branch, Russian Academy of Sciences (Khabarovsk, Russia), issue 1, pages 7-33.
    2. Umut Akovali, 2020. "Beyond Connectedness: A Covariance Decomposition based Network Risk Model," Koç University-TUSIAD Economic Research Forum Working Papers 2003, Koc University-TUSIAD Economic Research Forum.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timo Bettendorf & Reinhold Heinlein, 2023. "Connectedness between G10 currencies: Searching for the causal structure," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(4), pages 3938-3959, October.
    2. Mardi Dungey & John Harvey & Pierre Siklos & Vladimir Volkov, 2017. "Signed spillover effects building on historical decompositions," CAMA Working Papers 2017-52, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    3. Greenwood-Nimmo, Matthew & Tarassow, Artur, 2022. "Bootstrap-based probabilistic analysis of spillover scenarios in economic and financial networks," Journal of Financial Markets, Elsevier, vol. 59(PA).
    4. Boeckelmann Lukas & Stalla-Bourdillon Arthur, 2021. "Structural Estimation of Time-Varying Spillovers: An Application to International Credit Risk Transmission," Working papers 798, Banque de France.
    5. Umut Akovali, 2020. "Beyond Connectedness: A Covariance Decomposition based Network Risk Model," Koç University-TUSIAD Economic Research Forum Working Papers 2003, Koc University-TUSIAD Economic Research Forum.
    6. Kamil Yilmaz, 2018. "Bank Volatility Connectedness in South East Asia," Koç University-TUSIAD Economic Research Forum Working Papers 1807, Koc University-TUSIAD Economic Research Forum.
    7. Kole, Erik & van Dijk, Dick, 2023. "Moments, shocks and spillovers in Markov-switching VAR models," Journal of Econometrics, Elsevier, vol. 236(2).
    8. Okorie, David Iheke & Lin, Boqiang, 2022. "Givers never lack: Nigerian oil & gas asymmetric network analyses," Energy Economics, Elsevier, vol. 108(C).
    9. Christopher Thiem, 2020. "Cross-Category, Trans-Pacific Spillovers of Policy Uncertainty and Financial Market Volatility," Open Economies Review, Springer, vol. 31(2), pages 317-342, April.
    10. Elsayed, Ahmed H. & Nasreen, Samia & Tiwari, Aviral Kumar, 2020. "Time-varying co-movements between energy market and global financial markets: Implication for portfolio diversification and hedging strategies," Energy Economics, Elsevier, vol. 90(C).
    11. M. Raddant & T. Di Matteo, 2023. "A look at financial dependencies by means of econophysics and financial economics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(4), pages 701-734, October.
    12. Feldkircher, Martin & Siklos, Pierre L., 2019. "Global inflation dynamics and inflation expectations," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 217-241.
    13. Binh Thai Pham & Hector Sala, 2022. "Cross-country connectedness in inflation and unemployment: measurement and macroeconomic consequences," Empirical Economics, Springer, vol. 62(3), pages 1123-1146, March.
    14. Ogbuabor, Jonathan E. & Anthony-Orji, Onyinye I. & Manasseh, Charles O. & Orji, Anthony, 2020. "Measuring the dynamics of COMESA output connectedness with the global economy," The Journal of Economic Asymmetries, Elsevier, vol. 21(C).
    15. Everett Grant & Julieta Yung, 2017. "The Double-Edged Sword of Global Integration: Robustness, Fragility & Contagion in the International Firm Network," Globalization Institute Working Papers 313, Federal Reserve Bank of Dallas.
    16. Yu Chen & Jie Hu & Weiping Zhang, 2020. "Too Connected to Fail? Evidence from a Chinese Financial Risk Spillover Network," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 28(6), pages 78-100, November.
    17. Chuliá, Helena & Fernández, Julián & Uribe, Jorge M., 2018. "Currency downside risk, liquidity, and financial stability," Journal of International Money and Finance, Elsevier, vol. 89(C), pages 83-102.
    18. David Gabauer, 2020. "Volatility impulse response analysis for DCC‐GARCH models: The role of volatility transmission mechanisms," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 788-796, August.
    19. Luca Barbaglia & Christophe Croux & Ines Wilms, 2017. "Volatility spillovers and heavy tails: a large t-Vector AutoRegressive approach," Working Papers of Department of Decision Sciences and Information Management, Leuven 590528, KU Leuven, Faculty of Economics and Business (FEB), Department of Decision Sciences and Information Management, Leuven.
    20. Barbaglia, Luca & Croux, Christophe & Wilms, Ines, 2020. "Volatility spillovers in commodity markets: A large t-vector autoregressive approach," Energy Economics, Elsevier, vol. 85(C).

    More about this item

    Keywords

    connectedness; networks; graph theory; vector autoregression; exchange rates;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • F31 - International Economics - - International Finance - - - Foreign Exchange

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:bubdps:062019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/dbbgvde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.