IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Bias-corrected estimation in potentially mildly explosive autoregressive models

  • Hendrik Kaufmannz

    ()

    (Leibniz University Hannover)

  • Robinson Kruse

    ()

    (Leibniz University Hannover and CREATES)

This paper provides a comprehensive Monte Carlo comparison of different finite-sample bias-correction methods for autoregressive processes. We consider classic situations where the process is either stationary or exhibits a unit root. Importantly, the case of mildly explosive behaviour is studied as well. We compare the empirical performance of an indirect inference estimator (Phillips, Wu, and Yu, 2011), a jackknife approach (Chambers, 2013), the approximately median-unbiased estimator by Roy and Fuller (2001) and the bootstrap- aided estimator by Kim (2003). Our findings suggest that the indirect inference approach o ers a valuable alternative to other existing techniques. Its performance (measured by its bias and root mean squared error) is balanced and highly competitive across many different settings. A clear advantage is its applicability for mildly explosive processes. In an empirical application to a long annual US Debt/GDP series we consider rolling window estimation of autoregressive models. We find substantial evidence for time-varying persistence and periods of explosiveness during the Civil War and World War II. During the recent years, the series is nearly explosive again. Further applications to commodity and interest rate series are considered as well.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: ftp://ftp.econ.au.dk/creates/rp/13/rp13_10.pdf
Download Restriction: no

Paper provided by School of Economics and Management, University of Aarhus in its series CREATES Research Papers with number 2013-10.

as
in new window

Length: 30
Date of creation: 04 2013
Date of revision:
Handle: RePEc:aah:create:2013-10
Contact details of provider: Web page: http://www.econ.au.dk/afn/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Tom Engsted & Thomas Q. Pedersen, 2011. "Bias-correction in vector autoregressive models: A simulation study," CREATES Research Papers 2011-18, School of Economics and Management, University of Aarhus.
  2. Christian Gourieroux & Peter C. B. Phillips & Jun Yu, 2006. "Indirect Inference for Dynamic Panel Models," Cowles Foundation Discussion Papers 1550, Cowles Foundation for Research in Economics, Yale University.
  3. Clark, Steven P. & Coggin, T. Daniel, 2011. "Was there a U.S. house price bubble? An econometric analysis using national and regional panel data," The Quarterly Review of Economics and Finance, Elsevier, vol. 51(2), pages 189-200, May.
  4. Baur, Dirk G. & Dimpfl, Thomas & Jung, Robert C., 2012. "Stock return autocorrelations revisited: A quantile regression approach," Journal of Empirical Finance, Elsevier, vol. 19(2), pages 254-265.
  5. Peter C. B. Phillips & Yangru Wu & Jun Yu, 2007. "Explosive Behavior in the 1990s Nasdaq: When Did Exuberance Escalate Asset Values?," Working Papers 222007, Hong Kong Institute for Monetary Research.
  6. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
  7. Kim, Jae-Young, 2000. "Detection of change in persistence of a linear time series," Journal of Econometrics, Elsevier, vol. 95(1), pages 97-116, March.
  8. Abadir, Karim M., 1993. "Ols Bias in a Nonstationary Autoregression," Econometric Theory, Cambridge University Press, vol. 9(01), pages 81-93, January.
  9. Efthymios Pavlidis & Ivan Paya & David Peel, 2012. "A New Test for Rational Speculative Bubbles using Forward Exchange Rates: The Case of the Interwar German Hyperinflation," Working Papers 18599597, Lancaster University Management School, Economics Department.
  10. Hansen,B.E., 1998. "The grid bootstrap and the autoregressive model," Working papers 26, Wisconsin Madison - Social Systems.
  11. Roy, Anindya & Fuller, Wayne A, 2001. "Estimation for Autoregressive Time Series with a Root Near 1," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 482-93, October.
  12. Gourieroux, C & Monfort, A & Renault, E, 1993. "Indirect Inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages S85-118, Suppl. De.
  13. Andrews, Donald W K & Chen, Hong-Yuan, 1994. "Approximately Median-Unbiased Estimation of Autoregressive Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 187-204, April.
  14. Terence Tai-Leung, Chong, 1997. "Structural Change in AR(1) Models," Departmental Working Papers _079, Chinese University of Hong Kong, Department of Economics.
  15. Peter C. B. Phillips, 2012. "Folklore Theorems, Implicit Maps, and Indirect Inference," Econometrica, Econometric Society, vol. 80(1), pages 425-454, 01.
  16. Schotman, Peter & van Dijk, Herman K., 1991. "A Bayesian analysis of the unit root in real exchange rates," Journal of Econometrics, Elsevier, vol. 49(1-2), pages 195-238.
  17. MacKinnon, James G. & Smith Jr., Anthony A., 1998. "Approximate bias correction in econometrics," Journal of Econometrics, Elsevier, vol. 85(2), pages 205-230, August.
  18. Peter C.B. Phillips & Tassos Magdalinos, 2004. "Limit Theory for Moderate Deviations from a Unit Root," Cowles Foundation Discussion Papers 1471, Cowles Foundation for Research in Economics, Yale University.
  19. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
  20. Simon van Norden, 1995. "Regime Switching as a Test for Exchange Rate Bubbles," Econometrics 9502001, EconWPA, revised 09 Aug 1995.
  21. Robert Taylor & Stephen Leybourne & David Harvey, 2004. "Modified Tests for a Change in Persistence," Econometric Society 2004 Australasian Meetings 64, Econometric Society.
  22. Marcus J Chambers, 2010. "Jackknife Estimation of Stationary Autoregressive Models," Economics Discussion Papers 684, University of Essex, Department of Economics.
  23. Jörg Breitung & Robinson Kruse, 2013. "When bubbles burst: econometric tests based on structural breaks," Statistical Papers, Springer, vol. 54(4), pages 911-930, November.
  24. Smith, A A, Jr, 1993. "Estimating Nonlinear Time-Series Models Using Simulated Vector Autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages S63-84, Suppl. De.
  25. Dirk G. Baur & Thomas K. McDermott, . "Is gold a safe haven? International evidence," The Institute for International Integration Studies Discussion Paper Series iiisdp310, IIIS.
  26. Shi, Shuping & Arora, Vipin, 2012. "An application of models of speculative behaviour to oil prices," Economics Letters, Elsevier, vol. 115(3), pages 469-472.
  27. Rossi, Barbara, 2002. "Confidence Intervals for Half-life Deviations from Purchasing Power Parity," Working Papers 02-08, Duke University, Department of Economics.
  28. Lof, Matthijs, 2012. "Heterogeneity in stock prices: A STAR model with multivariate transition function," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1845-1854.
  29. Stephen Leybourne & Robert Taylor & Tae-Hwan Kim, 2007. "CUSUM of Squares-Based Tests for a Change in Persistence," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(3), pages 408-433, 05.
  30. Kim, Jae H., 2003. "Forecasting autoregressive time series with bias-corrected parameter estimators," International Journal of Forecasting, Elsevier, vol. 19(3), pages 493-502.
  31. Casella, Alessandra, 1989. "Testing for rational bubbles with exogenous or endogenous fundamentals : The German hyperinflation once more," Journal of Monetary Economics, Elsevier, vol. 24(1), pages 109-122, July.
  32. Bao, Yong & Ullah, Aman, 2007. "The second-order bias and mean squared error of estimators in time-series models," Journal of Econometrics, Elsevier, vol. 140(2), pages 650-669, October.
  33. Chambers, Marcus J. & Kyriacou, Maria, 2012. "Jackknife bias reduction in autoregressive models with a unit root," MPRA Paper 38255, University Library of Munich, Germany.
  34. Diba, Behzad T & Grossman, Herschel I, 1988. "Explosive Rational Bubbles in Stock Prices?," American Economic Review, American Economic Association, vol. 78(3), pages 520-30, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:aah:create:2013-10. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.