IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Jackknife bias reduction in autoregressive models with a unit root

  • Chambers, Marcus J.
  • Kyriacou, Maria

This paper is concerned with the application of jackknife methods as a means of bias reduction in the estimation of autoregressive models with a unit root. It is shown that the usual jackknife estimator based on non-overlapping sub-samples does not remove fully the first-order bias as intended, but that an ‘optimal’ jackknife estimator can be de- fined that is capable of removing this bias. The results are based on a demonstration that the sub-sample estimators converge to different limiting distributions, and the joint moment generating function of the numerator and denominator of these distributions (which are func- tionals of a Wiener process over a sub-interval of [0,1]) is derived and utilised to extract the optimal weights. Simulations demonstrate the ability of the jackknife estimator to produce substantial bias reductions in the parameter of interest. It is also shown that incorporating an intercept in the regressions allows the standard jackknife estimator to be used and it is able also to produce substantial bias reduction despite the fact that the distributions of the full-sample and sub-sample estimators have greater bias in this case. Of interest, too, is the fact that the jackknife estimators can also reduce the overall root mean squared error compared to the ordinary least squares estimator, this requiring a larger (though still small) number of sub-samples compared to the value that produces maximum bias reduction (which is typically equal to two).

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: https://mpra.ub.uni-muenchen.de/38255/1/MPRA_paper_38255.pdf
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 38255.

as
in new window

Length:
Date of creation: 01 Feb 2012
Date of revision:
Handle: RePEc:pra:mprapa:38255
Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: https://mpra.ub.uni-muenchen.de

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Gonzalo, Jesus & Pitarakis, Jean-Yves, 1998. "On the Exact Moments of Asymptotic Distributions in an Unstable AR(1) with Dependent Errors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(1), pages 71-88, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:38255. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.