IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1804.00232.html
   My bibliography  Save this paper

Continuous Record Laplace-based Inference about the Break Date in Structural Change Models

Author

Listed:
  • Alessandro Casini
  • Pierre Perron

Abstract

Building upon the continuous record asymptotic framework recently introduced by Casini and Perron (2018a) for inference in structural change models, we propose a Laplace-based (Quasi-Bayes) procedure for the construction of the estimate and confidence set for the date of a structural change. It is defined by an integration rather than an optimization-based method. A transformation of the least-squares criterion function is evaluated in order to derive a proper distribution, referred to as the Quasi-posterior. For a given choice of a loss function, the Laplace-type estimator is the minimizer of the expected risk with the expectation taken under the Quasi-posterior. Besides providing an alternative estimate that is more precise|lower mean absolute error (MAE) and lower root-mean squared error (RMSE)|than the usual least-squares one, the Quasi-posterior distribution can be used to construct asymptotically valid inference using the concept of Highest Density Region. The resulting Laplace-based inferential procedure is shown to have lower MAE and RMSE, and the confidence sets strike the best balance between empirical coverage rates and average lengths of the confidence sets relative to traditional long-span methods, whether the break size is small or large.

Suggested Citation

  • Alessandro Casini & Pierre Perron, 2018. "Continuous Record Laplace-based Inference about the Break Date in Structural Change Models," Papers 1804.00232, arXiv.org, revised Aug 2019.
  • Handle: RePEc:arx:papers:1804.00232
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1804.00232
    File Function: Latest version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    2. Elliott, Graham & Muller, Ulrich K., 2007. "Confidence sets for the date of a single break in linear time series regressions," Journal of Econometrics, Elsevier, vol. 141(2), pages 1196-1218, December.
    3. repec:eee:econom:v:200:y:2017:i:1:p:36-47 is not listed on IDEAS
    4. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
    5. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
    6. Yacine Aït-Sahalia & Jean Jacod, 2014. "High-Frequency Financial Econometrics," Economics Books, Princeton University Press, edition 1, number 10261.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Papers 1805.03807, arXiv.org.
    2. Yaein Baek, 2018. "Estimation of Structural Break Point in Linear Regression Models," Papers 1811.03720, arXiv.org, revised May 2019.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1804.00232. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.