IDEAS home Printed from https://ideas.repec.org/a/ect/emjrnl/v9y2006i3p423-447.html

A comparison of alternative asymptotic frameworks to analyse a structural change in a linear time trend

Author

Listed:
  • Ai Deng
  • Pierre Perron

Abstract

This paper considers various asymptotic approximations to the finite sample distribution of the estimate of the break date in a simple one-break model for a linear trend function that exhibits a change in slope, with or without a concurrent change in intercept. The noise component is either stationary or has an autoregressive unit root. Our main focus is on comparing the so-called "bounded-trend" and "unbounded-trend" asymptotic frameworks. Not surprisingly, the "bounded-trend" asymptotic framework is of little use when the noise component is integrated. When the noise component is stationary, we obtain the following results. If the intercept does not change and is not allowed to change in the estimation, both frameworks yield the same approximation. However, when the intercept is allowed to change, whether or not it actually changes in the data, the "bounded-trend" asymptotic framework completely misses important features of the finite sample distribution of the estimate of the break date, especially the pronounced bimodality that was uncovered by Perron and Zhu (2005) and shown to be well captured using the "unbounded-trend" asymptotic framework. Simulation experiments confirm our theoretical findings, which expose the drawbacks of using the " bounded-trend" asymptotic framework in the context of structural change models. Copyright Royal Economic Society 2006

Suggested Citation

  • Ai Deng & Pierre Perron, 2006. "A comparison of alternative asymptotic frameworks to analyse a structural change in a linear time trend," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 423-447, November.
  • Handle: RePEc:ect:emjrnl:v:9:y:2006:i:3:p:423-447
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Papers 1805.03807, arXiv.org.
    2. Brittle, Shane, 2009. "Ricardian Equivalence and the Efficacy of Fiscal Policy in Australia," Economics Working Papers wp09-10, School of Economics, University of Wollongong, NSW, Australia.
    3. Casini, Alessandro & Perron, Pierre, 2024. "Prewhitened long-run variance estimation robust to nonstationarity," Journal of Econometrics, Elsevier, vol. 242(1).
    4. Anton Skrobotov, 2020. "Survey on structural breaks and unit root tests," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 58, pages 96-141.
    5. Alessandro Casini & Pierre Perron, 2018. "Continuous Record Asymptotics for Change-Points Models," Papers 1803.10881, arXiv.org, revised Nov 2021.
    6. Alessandro Casini & Pierre Perron, 2015. "Continuous Record Asymptotics for Structural Change Models," Boston University - Department of Economics - Working Papers Series WP2018-010, Boston University - Department of Economics, revised Nov 2017.
    7. Federico Belotti & Alessandro Casini & Leopoldo Catania & Stefano Grassi & Pierre Perron, 2023. "Simultaneous bandwidths determination for DK-HAC estimators and long-run variance estimation in nonparametric settings," Econometric Reviews, Taylor & Francis Journals, vol. 42(3), pages 281-306, February.
    8. Alessandro Casini, 2021. "Theory of Evolutionary Spectra for Heteroskedasticity and Autocorrelation Robust Inference in Possibly Misspecified and Nonstationary Models," Papers 2103.02981, arXiv.org, revised Aug 2024.
    9. Seong Yeon Chang & Pierre Perron, 2016. "Inference on a Structural Break in Trend with Fractionally Integrated Errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(4), pages 555-574, July.
    10. Md., Samsur Jaman, 2014. "Monitoring Structural Changes in NER: -An Empirical Analysis of Mizoram," MPRA Paper 60270, University Library of Munich, Germany.
    11. Alessandro Casini & Taosong Deng & Pierre Perron, 2021. "Theory of Low Frequency Contamination from Nonstationarity and Misspecification: Consequences for HAR Inference," Papers 2103.01604, arXiv.org, revised Sep 2024.
    12. Aue, Alexander & Horváth, Lajos & Hušková, Marie, 2012. "Segmenting mean-nonstationary time series via trending regressions," Journal of Econometrics, Elsevier, vol. 168(2), pages 367-381.
    13. Casini, Alessandro & Perron, Pierre, 2021. "Continuous record Laplace-based inference about the break date in structural change models," Journal of Econometrics, Elsevier, vol. 224(1), pages 3-21.
    14. Casini, Alessandro & Perron, Pierre, 2022. "Generalized Laplace Inference In Multiple Change-Points Models," Econometric Theory, Cambridge University Press, vol. 38(1), pages 35-65, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:9:y:2006:i:3:p:423-447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.