IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v34y2018i05p985-1017_00.html

Structural Change In Nonstationary Ar(1) Models

Author

Listed:
  • Pang, Tianxiao
  • Tai-Leung Chong, Terence
  • Zhang, Danna
  • Liang, Yanling

Abstract

This article revisits the asymptotic inference for nonstationary AR(1) models of Phillips and Magdalinos (2007a) by incorporating a structural change in the AR parameter at an unknown time k0. Consider the model ${y_t} = {\beta _1}{y_{t - 1}}I\{ t \le {k_0}\} + {\beta _2}{y_{t - 1}}I\{ t > {k_0}\} + {\varepsilon _t},t = 1,2, \ldots ,T$, where I{·} denotes the indicator function, one of ${\beta _1}$ and ${\beta _2}$ depends on the sample size T, and the other is equal to one. We examine four cases: Case (I): ${\beta _1} = {\beta _{1T}} = 1 - c/{k_T}$, ${\beta _2} = 1$; (II): ${\beta _1} = 1$, ${\beta _2} = {\beta _{2T}} = 1 - c/{k_T}$; (III): ${\beta _1} = 1$, ${\beta _2} = {\beta _{2T}} = 1 + c/{k_T}$; and case (IV): ${\beta _1} = {\beta _{1T}} = 1 + c/{k_T}$, ${\beta _2} = 1$, where c is a fixed positive constant, and kT is a sequence of positive constants increasing to ∞ such that kT = o(T). We derive the limiting distributions of the t-ratios of ${\beta _1}$ and ${\beta _2}$ and the least squares estimator of the change point for the cases above under some mild conditions. Monte Carlo simulations are conducted to examine the finite-sample properties of the estimators. Our theoretical findings are supported by the Monte Carlo simulations.

Suggested Citation

  • Pang, Tianxiao & Tai-Leung Chong, Terence & Zhang, Danna & Liang, Yanling, 2018. "Structural Change In Nonstationary Ar(1) Models," Econometric Theory, Cambridge University Press, vol. 34(5), pages 985-1017, October.
  • Handle: RePEc:cup:etheor:v:34:y:2018:i:05:p:985-1017_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466617000317/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pang, Tianxiao & Du, Lingjie & Chong, Terence Tai-Leung, 2021. "Estimating multiple breaks in nonstationary autoregressive models," Journal of Econometrics, Elsevier, vol. 221(1), pages 277-311.
    2. Tu, Yundong & Xie, Xinling, 2023. "Penetrating sporadic return predictability," Journal of Econometrics, Elsevier, vol. 237(1).
    3. Westerlund, Joakim & Nordström, Marcus, 2021. "Breaks in persistence in fixed-T panel data," Economics Letters, Elsevier, vol. 205(C).
    4. Eiji Kurozumi & Anton Skrobotov, 2025. "Confidence Sets for the Emergence, Collapse, and Recovery Dates of a Bubble," Papers 2511.16172, arXiv.org.
    5. Eiji Kurozumi & Anton Skrobotov, 2021. "On the asymptotic behavior of bubble date estimators," Papers 2110.04500, arXiv.org, revised Sep 2022.

    More about this item

    JEL classification:

    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:34:y:2018:i:05:p:985-1017_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.