IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v34y2018i05p985-1017_00.html
   My bibliography  Save this article

Structural Change In Nonstationary Ar(1) Models

Author

Listed:
  • Pang, Tianxiao
  • Tai-Leung Chong, Terence
  • Zhang, Danna
  • Liang, Yanling

Abstract

This article revisits the asymptotic inference for nonstationary AR(1) models of Phillips and Magdalinos (2007a) by incorporating a structural change in the AR parameter at an unknown time k0. Consider the model ${y_t} = {\beta _1}{y_{t - 1}}I\{ t \le {k_0}\} + {\beta _2}{y_{t - 1}}I\{ t > {k_0}\} + {\varepsilon _t},t = 1,2, \ldots ,T$, where I{·} denotes the indicator function, one of ${\beta _1}$ and ${\beta _2}$ depends on the sample size T, and the other is equal to one. We examine four cases: Case (I): ${\beta _1} = {\beta _{1T}} = 1 - c/{k_T}$, ${\beta _2} = 1$; (II): ${\beta _1} = 1$, ${\beta _2} = {\beta _{2T}} = 1 - c/{k_T}$; (III): ${\beta _1} = 1$, ${\beta _2} = {\beta _{2T}} = 1 + c/{k_T}$; and case (IV): ${\beta _1} = {\beta _{1T}} = 1 + c/{k_T}$, ${\beta _2} = 1$, where c is a fixed positive constant, and kT is a sequence of positive constants increasing to ∞ such that kT = o(T). We derive the limiting distributions of the t-ratios of ${\beta _1}$ and ${\beta _2}$ and the least squares estimator of the change point for the cases above under some mild conditions. Monte Carlo simulations are conducted to examine the finite-sample properties of the estimators. Our theoretical findings are supported by the Monte Carlo simulations.

Suggested Citation

  • Pang, Tianxiao & Tai-Leung Chong, Terence & Zhang, Danna & Liang, Yanling, 2018. "Structural Change In Nonstationary Ar(1) Models," Econometric Theory, Cambridge University Press, vol. 34(5), pages 985-1017, October.
  • Handle: RePEc:cup:etheor:v:34:y:2018:i:05:p:985-1017_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466617000317/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chong, Terence Tai-Leung, 2001. "Structural Change In Ar(1) Models," Econometric Theory, Cambridge University Press, vol. 17(1), pages 87-155, February.
    2. Jushan Bai & Haiqiang Chen & Terence Tai-Leung Chong & Seraph Xin Wang, 2008. "Generic consistency of the break-point estimators under specification errors in a multiple-break model," Econometrics Journal, Royal Economic Society, vol. 11(2), pages 287-307, July.
    3. Peter C. B. Phillips & Yangru Wu & Jun Yu, 2011. "EXPLOSIVE BEHAVIOR IN THE 1990s NASDAQ: WHEN DID EXUBERANCE ESCALATE ASSET VALUES?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(1), pages 201-226, February.
    4. Peter C. B. Phillips & Jun Yu, 2011. "Dating the timeline of financial bubbles during the subprime crisis," Quantitative Economics, Econometric Society, vol. 2(3), pages 455-491, November.
    5. Burdekin, Richard C K & Siklos, Pierre L, 1999. "Exchange Rate Regimes and Shifts in Inflation Persistence: Does Nothing Else Matter?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 31(2), pages 235-247, May.
    6. Jean-Yves Pitarakis, 2004. "Least squares estimation and tests of breaks in mean and variance under misspecification," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 32-54, June.
    7. Peter C. B. Phillips & Shuping Shi & Jun Yu, 2015. "Testing For Multiple Bubbles: Limit Theory Of Real‐Time Detectors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56, pages 1079-1134, November.
    8. Bai, Jushan, 1997. "Estimating Multiple Breaks One at a Time," Econometric Theory, Cambridge University Press, vol. 13(3), pages 315-352, June.
    9. Kejriwal, Mohitosh & Perron, Pierre & Zhou, Jing, 2013. "Wald Tests For Detecting Multiple Structural Changes In Persistence," Econometric Theory, Cambridge University Press, vol. 29(2), pages 289-323, April.
    10. Qu, Zhongjun, 2008. "Testing for structural change in regression quantiles," Journal of Econometrics, Elsevier, vol. 146(1), pages 170-184, September.
    11. N. Gregory Mankiw & Jeffrey A. Miron, 1986. "The Changing Behavior of the Term Structure of Interest Rates," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 101(2), pages 211-228.
    12. Tianxiao Pang & Danna Zhang & Terence Tai-Leung Chong, 2014. "Asymptotic Inferences For An Ar(1) Model With A Change Point: Stationary And Nearly Non-Stationary Cases," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(2), pages 133-150, March.
    13. Pang, Tianxiao & Zhang, Danna & Chong, Terence Tai-Leung, 2013. "Asymptotic Inferences for an AR(1) Model with a Change Point: Stationary and Nearly Non-stationary Cases," MPRA Paper 55312, University Library of Munich, Germany.
    14. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    15. Mankiw, N Gregory & Miron, Jeffrey A & Weil, David N, 1987. "The Adjustment of Expectations to a Change in Regime: A Study of the Founding of the Federal Reserve," American Economic Review, American Economic Association, vol. 77(3), pages 358-374, June.
    16. Halunga, Andreea G. & Osborn, Denise R., 2012. "Ratio-based estimators for a change point in persistence," Journal of Econometrics, Elsevier, vol. 171(1), pages 24-31.
    17. Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2006. "Modified tests for a change in persistence," Journal of Econometrics, Elsevier, vol. 134(2), pages 441-469, October.
    18. Bruce E. Hansen, 2001. "The New Econometrics of Structural Change: Dating Breaks in U.S. Labour Productivity," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 117-128, Fall.
    19. Phillips, Peter C.B. & Magdalinos, Tassos, 2007. "Limit theory for moderate deviations from a unit root," Journal of Econometrics, Elsevier, vol. 136(1), pages 115-130, January.
    20. Engle, Robert F. & White (the late), Halbert (ed.), 1999. "Cointegration, Causality, and Forecasting: Festschrift in Honour of Clive W. J. Granger," OUP Catalogue, Oxford University Press, number 9780198296836.
    21. Stephen Leybourne & Tae-Hwan Kim & Vanessa Smith & Paul Newbold, 2003. "Tests for a change in persistence against the null of difference-stationarity," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 291-311, December.
    22. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
    23. István Berkes & Lajos Horváth & Shiqing Ling & Johannes Schauer, 2011. "Testing for structural change of AR model to threshold AR model," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(5), pages 547-565, September.
    24. Barsky, Robert B., 1987. "The Fisher hypothesis and the forecastability and persistence of inflation," Journal of Monetary Economics, Elsevier, vol. 19(1), pages 3-24, January.
    25. Sokbae Lee & Myung Hwan Seo & Youngki Shin, 2016. "The lasso for high dimensional regression with a possible change point," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 193-210, January.
    26. Magdalinos, Tassos, 2012. "Mildly explosive autoregression under weak and strong dependence," Journal of Econometrics, Elsevier, vol. 169(2), pages 179-187.
    27. Sai-Hua Huang & Tian-Xiao Pang & Chengguo Weng, 2014. "Limit Theory for Moderate Deviations from a Unit Root Under Innovations with a Possibly Infinite Variance," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 187-206, March.
    28. Harvey, David I. & Leybourne, Stephen J. & Sollis, Robert, 2017. "Improving the accuracy of asset price bubble start and end date estimators," Journal of Empirical Finance, Elsevier, vol. 40(C), pages 121-138.
    29. Hakkio, Craig S & Rush, Mark, 1991. "Is the Budget Deficit "Too Large?"," Economic Inquiry, Western Economic Association International, vol. 29(3), pages 429-445, July.
    30. Terence Tai-Leung Chong, 2003. "Generic consistency of the break-point estimator under specification errors," Econometrics Journal, Royal Economic Society, vol. 6(1), pages 167-192, June.
    31. Tianxiao Pang & Danna Zhang, 2015. "Asymptotic Inferences for an AR(1) Model with a Change Point and Possibly Infinite Variance," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(22), pages 4848-4865, November.
    32. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pang, Tianxiao & Du, Lingjie & Chong, Terence Tai-Leung, 2021. "Estimating multiple breaks in nonstationary autoregressive models," Journal of Econometrics, Elsevier, vol. 221(1), pages 277-311.
    2. Tu, Yundong & Xie, Xinling, 2023. "Penetrating sporadic return predictability," Journal of Econometrics, Elsevier, vol. 237(1).
    3. Westerlund, Joakim & Nordström, Marcus, 2021. "Breaks in persistence in fixed-T panel data," Economics Letters, Elsevier, vol. 205(C).
    4. Eiji Kurozumi & Anton Skrobotov, 2021. "On the asymptotic behavior of bubble date estimators," Papers 2110.04500, arXiv.org, revised Sep 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pang, Tianxiao & Du, Lingjie & Chong, Terence Tai-Leung, 2021. "Estimating multiple breaks in nonstationary autoregressive models," Journal of Econometrics, Elsevier, vol. 221(1), pages 277-311.
    2. Giorgio Canarella & Rangan Gupta & Stephen M. Miller & Stephen K. Pollard, 2019. "Unemployment rate hysteresis and the great recession: exploring the metropolitan evidence," Empirical Economics, Springer, vol. 56(1), pages 61-79, January.
    3. Tao, Yubo & Phillips, Peter C.B. & Yu, Jun, 2019. "Random coefficient continuous systems: Testing for extreme sample path behavior," Journal of Econometrics, Elsevier, vol. 209(2), pages 208-237.
    4. Daiqing Xi & Tianxiao Pang, 2021. "Estimating multiple breaks in mean sequentially with fractionally integrated errors," Statistical Papers, Springer, vol. 62(1), pages 451-494, February.
    5. Esteve Vicente & Prats Maria A., 2021. "Structural Breaks and Explosive Behavior in the Long-Run: The Case of Australian Real House Prices, 1870–2020," Economics - The Open-Access, Open-Assessment Journal, De Gruyter, vol. 15(1), pages 72-84, January.
    6. Mohitosh Kejriwal, 2020. "A Robust Sequential Procedure for Estimating the Number of Structural Changes in Persistence," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(3), pages 669-685, June.
    7. Vicente Esteve & María A. Prats, 2021. "Testing for rational bubbles in Australian housing market from a long-term perspective," Working Papers 2113, Department of Applied Economics II, Universidad de Valencia.
    8. Jouini, Jamel & Boutahar, Mohamed, 2005. "Evidence on structural changes in U.S. time series," Economic Modelling, Elsevier, vol. 22(3), pages 391-422, May.
    9. Koo, Bonsoo & Seo, Myung Hwan, 2015. "Structural-break models under mis-specification: Implications for forecasting," Journal of Econometrics, Elsevier, vol. 188(1), pages 166-181.
    10. Lui, Yiu Lim & Phillips, Peter C.B. & Yu, Jun, 2024. "Robust testing for explosive behavior with strongly dependent errors," Journal of Econometrics, Elsevier, vol. 238(2).
    11. Christis Katsouris, 2023. "Break-Point Date Estimation for Nonstationary Autoregressive and Predictive Regression Models," Papers 2308.13915, arXiv.org.
    12. Hong, Yongmiao & Linton, Oliver & McCabe, Brendan & Sun, Jiajing & Wang, Shouyang, 2024. "Kolmogorov–Smirnov type testing for structural breaks: A new adjusted-range based self-normalization approach," Journal of Econometrics, Elsevier, vol. 238(2).
    13. Wang, Xiaohu & Yu, Jun, 2016. "Double asymptotics for explosive continuous time models," Journal of Econometrics, Elsevier, vol. 193(1), pages 35-53.
    14. Yubo Tao & Jun Yu, 2020. "Model Selection for Explosive Models," Advances in Econometrics, in: Essays in Honor of Cheng Hsiao, volume 41, pages 73-103, Emerald Group Publishing Limited.
    15. Kruse, Yves Robinson & Kaufmann, Hendrik, 2015. "Bias-corrected estimation in mildly explosive autoregressions," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112897, Verein für Socialpolitik / German Economic Association.
    16. Tianxiao Pang & Danna Zhang & Terence Tai-Leung Chong, 2014. "Asymptotic Inferences For An Ar(1) Model With A Change Point: Stationary And Nearly Non-Stationary Cases," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(2), pages 133-150, March.
    17. Sinelnikova-Muryleva, Elena & Skrobotov, Anton, 2017. "Testing time series for the bubbles (with application to Russian data)," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 46, pages 90-103.
    18. Hendrik Kaufmannz & Robinson Kruse, 2013. "Bias-corrected estimation in potentially mildly explosive autoregressive models," CREATES Research Papers 2013-10, Department of Economics and Business Economics, Aarhus University.
    19. Eiji Kurozumi & Anton Skrobotov, 2021. "On the asymptotic behavior of bubble date estimators," Papers 2110.04500, arXiv.org, revised Sep 2022.
    20. Eiji Kurozumi & Anton Skrobotov, 2023. "On the asymptotic behavior of bubble date estimators," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(4), pages 359-373, July.

    More about this item

    JEL classification:

    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:34:y:2018:i:05:p:985-1017_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.