IDEAS home Printed from https://ideas.repec.org/p/azt/cemmap/26-14.html
   My bibliography  Save this paper

The lasso for high-dimensional regression with a possible change-point

Author

Listed:
  • Sokbae (Simon) Lee
  • Myung Hwan Seo
  • Youngki Shin

Abstract

We consider a high-dimensional regression model with a possible change-point due to a covariate threshold and develop the Lasso estimator of regression coefficients as well as the threshold parameter. Our Lasso estimator not only selects covariates but also selects a model between linear and threshold regression models. Under a sparsity assumption, we derive non-asymptotic oracle inequalities for both the prediction risk and the l1 estimation loss for regression coefficients. Since the Lasso estimator selects variables simultaneously, we show that oracle inequalities can be established without pretesting the existence of the threshold e ect. Furthermore, we establish conditions under which the estimation error of the unknown threshold parameter can be bounded by a nearly n-1 factor even when the number of regressors can be much larger than the sample size (n). We illustrate the usefulness of our proposed estimation method via Monte Carlo simulations and an application to real data.

Suggested Citation

  • Sokbae (Simon) Lee & Myung Hwan Seo & Youngki Shin, 2014. "The lasso for high-dimensional regression with a possible change-point," CeMMAP working papers 26/14, Institute for Fiscal Studies.
  • Handle: RePEc:azt:cemmap:26/14
    DOI: 10.1920/wp.cem.2014.2614
    as

    Download full text from publisher

    File URL: https://www.cemmap.ac.uk/wp-content/uploads/2020/08/CWP2614.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.1920/wp.cem.2014.2614?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. anonymous, 1995. "Does the bouncing ball lead to economic growth?," Regional Update, Federal Reserve Bank of Atlanta, issue Jul, pages 1-2,4-6.
    2. Robert J. Barro, 2013. "Inflation and Economic Growth," Annals of Economics and Finance, Society for AEF, vol. 14(1), pages 121-144, May.
    3. Jelena Bradic & Jianqing Fan & Weiwei Wang, 2011. "Penalized composite quasi‐likelihood for ultrahigh dimensional variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(3), pages 325-349, June.
    4. Durlauf, Steven N & Johnson, Paul A, 1995. "Multiple Regimes and Cross-Country Growth Behaviour," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(4), pages 365-384, Oct.-Dec..
    5. Pesaran, M. Hashem & Pick, Andreas, 2007. "Econometric issues in the analysis of contagion," Journal of Economic Dynamics and Control, Elsevier, vol. 31(4), pages 1245-1277, April.
    6. Bruce E. Hansen, 2000. "Sample Splitting and Threshold Estimation," Econometrica, Econometric Society, vol. 68(3), pages 575-604, May.
    7. Robert Tibshirani, 2011. "Regression shrinkage and selection via the lasso: a retrospective," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(3), pages 273-282, June.
    8. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    9. Wei Lin & Jinchi Lv, 2013. "High-Dimensional Sparse Additive Hazards Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 247-264, March.
    10. Xavier Sala-I-Martin, 1997. "Transfers, Social Safety Nets, and Economic Growth," IMF Staff Papers, Palgrave Macmillan, vol. 44(1), pages 81-102, March.
    11. David Card & Alexandre Mas & Jesse Rothstein, 2008. "Tipping and the Dynamics of Segregation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 123(1), pages 177-218.
    12. Gabriela Ciuperca, 2014. "Erratum to: Model selection by LASSO methods in a change-point model," Statistical Papers, Springer, vol. 55(4), pages 1231-1232, November.
    13. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    14. Klaus Frick & Axel Munk & Hannes Sieling, 2014. "Multiscale change point inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(3), pages 495-580, June.
    15. Harchaoui, Z. & Lévy-Leduc, C., 2010. "Multiple Change-Point Estimation With a Total Variation Penalty," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1480-1493.
    16. Gabriela Ciuperca, 2014. "Model selection by LASSO methods in a change-point model," Statistical Papers, Springer, vol. 55(2), pages 349-374, May.
    17. Kim, Yongdai & Choi, Hosik & Oh, Hee-Seok, 2008. "Smoothly Clipped Absolute Deviation on High Dimensions," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1665-1673.
    18. Philippe Aghion & Steven Durlauf (ed.), 2005. "Handbook of Economic Growth," Handbook of Economic Growth, Elsevier, edition 1, volume 1, number 1.
    19. Wu, Y., 2008. "Simultaneous change point analysis and variable selection in a regression problem," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 2154-2171, October.
    20. Lee, Sokbae & Seo, Myung Hwan & Shin, Youngki, 2011. "Testing for Threshold Effects in Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 220-231.
    21. Lan Wang & Yichao Wu & Runze Li, 2012. "Quantile Regression for Analyzing Heterogeneity in Ultra-High Dimension," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 214-222, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sokbae Lee & Yuan Liao & Myung Hwan Seo & Youngki Shin, 2018. "Oracle Estimation of a Change Point in High-Dimensional Quantile Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1184-1194, July.
    2. Shohoudi, Azadeh & Khalili, Abbas & Wolfson, David B. & Asgharian, Masoud, 2016. "Simultaneous variable selection and de-coarsening in multi-path change-point models," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 202-217.
    3. Kean Ming Tan & Lan Wang & Wen‐Xin Zhou, 2022. "High‐dimensional quantile regression: Convolution smoothing and concave regularization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(1), pages 205-233, February.
    4. Behrendt, Simon & Schweikert, Karsten, 2021. "A Note on Adaptive Group Lasso for Structural Break Time Series," Econometrics and Statistics, Elsevier, vol. 17(C), pages 156-172.
    5. Qiang Li & Liming Wang, 2020. "Robust change point detection method via adaptive LAD-LASSO," Statistical Papers, Springer, vol. 61(1), pages 109-121, February.
    6. Karsten Schweikert, 2022. "Oracle Efficient Estimation of Structural Breaks in Cointegrating Regressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 83-104, January.
    7. Karsten Schweikert, 2020. "Oracle Efficient Estimation of Structural Breaks in Cointegrating Regressions," Papers 2001.07949, arXiv.org, revised Apr 2021.
    8. Young-Joo Kim & Myung Hwan Seo, 2017. "Is There a Jump in the Transition?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 241-249, April.
    9. Chumacero Rómulo A., 2006. "On the Power of Absolute Convergence Tests," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(2), pages 1-25, May.
    10. Samir Ghazouani, 2012. "Threshold Effect of Inflation on Growth: Evidence from MENA Region," Working Papers 715, Economic Research Forum, revised 2012.
    11. Kottaridi, Constantina & Stengos, Thanasis, 2010. "Foreign direct investment, human capital and non-linearities in economic growth," Journal of Macroeconomics, Elsevier, vol. 32(3), pages 858-871, September.
    12. Xiang Zhang & Yichao Wu & Lan Wang & Runze Li, 2016. "Variable selection for support vector machines in moderately high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 53-76, January.
    13. Stephen Dobson & Carlyn Ramlogan & Eric Strobl, 2006. "Why Do Rates Of Β‐Convergence Differ? A Meta‐Regression Analysis," Scottish Journal of Political Economy, Scottish Economic Society, vol. 53(2), pages 153-173, May.
    14. Zhaoping Hong & Yuao Hu & Heng Lian, 2013. "Variable selection for high-dimensional varying coefficient partially linear models via nonconcave penalty," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(7), pages 887-908, October.
    15. William A. Brock & Steven N. Durlauf & Kenneth D. West, 2003. "Policy Evaluation in Uncertain Economic Environments," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 34(1), pages 235-322.
    16. Wang, Shangshan & Xiang, Liming, 2017. "Two-layer EM algorithm for ALD mixture regression models: A new solution to composite quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 136-154.
    17. John Ssozi & Simplice A. Asongu, 2016. "The Comparative Economics of Catch-up in Output per Worker, Total Factor Productivity and Technological Gain in Sub-Saharan Africa," African Development Review, African Development Bank, vol. 28(2), pages 215-228, June.
    18. Gazi Hassan & Arusha Cooray & Mark Holmes, 2017. "The effect of female and male health on economic growth: cross-country evidence within a production function framework," Empirical Economics, Springer, vol. 52(2), pages 659-689, March.
    19. Yan, Xiaodong & Wang, Hongni & Wang, Wei & Xie, Jinhan & Ren, Yanyan & Wang, Xinjun, 2021. "Optimal model averaging forecasting in high-dimensional survival analysis," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1147-1155.
    20. Alvaro Mendez-Civieta & M. Carmen Aguilera-Morillo & Rosa E. Lillo, 2021. "Adaptive sparse group LASSO in quantile regression," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 547-573, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:azt:cemmap:26/14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dermot Watson (email available below). General contact details of provider: https://edirc.repec.org/data/ifsssuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.