IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v76y2014i3p495-580.html
   My bibliography  Save this article

Multiscale change point inference

Author

Listed:
  • Klaus Frick
  • Axel Munk
  • Hannes Sieling

Abstract

type="main" xml:id="rssb12047-abs-0001"> We introduce a new estimator, the simultaneous multiscale change point estimator SMUCE, for the change point problem in exponential family regression. An unknown step function is estimated by minimizing the number of change points over the acceptance region of a multiscale test at a level α. The probability of overestimating the true number of change points K is controlled by the asymptotic null distribution of the multiscale test statistic. Further, we derive exponential bounds for the probability of underestimating K. By balancing these quantities, α will be chosen such that the probability of correctly estimating K is maximized. All results are even non-asymptotic for the normal case. On the basis of these bounds, we construct (asymptotically) honest confidence sets for the unknown step function and its change points. At the same time, we obtain exponential bounds for estimating the change point locations which for example yield the minimax rate O ( n − 1 ) up to a log-term. Finally, the simultaneous multiscale change point estimator achieves the optimal detection rate of vanishing signals as n→∞, even for an unbounded number of change points. We illustrate how dynamic programming techniques can be employed for efficient computation of estimators and confidence regions. The performance of the multiscale approach proposed is illustrated by simulations and in two cutting edge applications from genetic engineering and photoemission spectroscopy.

Suggested Citation

  • Klaus Frick & Axel Munk & Hannes Sieling, 2014. "Multiscale change point inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(3), pages 495-580, June.
  • Handle: RePEc:bla:jorssb:v:76:y:2014:i:3:p:495-580
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssb.2014.76.issue-3
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:76:y:2014:i:3:p:495-580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.