IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v330y2023i1d10.1007_s10479-022-04522-9.html
   My bibliography  Save this article

Modelling extreme risk spillovers in the commodity markets around crisis periods including COVID19

Author

Listed:
  • Najaf Iqbal

    (Anhui University of Finance and Economics)

  • Elie Bouri

    (Lebanese American University)

  • Oksana Grebinevych

    (Montpellier Business School)

  • David Roubaud

    (Montpellier Business School)

Abstract

In this paper, we examine extreme spillovers among the realized volatility of various energy, metals, and agricultural commodities over the period from September 23, 2008, to June 1, 2020. Using high-frequency (5-min) price data on commodity futures, we compute daily realized volatility and then apply quantile-based connectedness measures. The results show that the connectedness measures estimated at the lower and upper quantiles are much higher than those estimated at the median, implying that realized volatility shocks circulate more intensely during extreme events relative to normal periods, which endangers the stability of the system of volatility connectedness under extreme events such as the COVID19 outbreak. There is evidence of a strong asymmetry between the behaviour of volatility spillovers in lower and upper quantiles, given that the connectedness measures estimated at the upper quantile are the highest. The main results are robust to rolling window size and other alternative choices. Our analyses matter to investors and policy makers who are concerned with the stability of commodity markets.

Suggested Citation

  • Najaf Iqbal & Elie Bouri & Oksana Grebinevych & David Roubaud, 2023. "Modelling extreme risk spillovers in the commodity markets around crisis periods including COVID19," Annals of Operations Research, Springer, vol. 330(1), pages 305-334, November.
  • Handle: RePEc:spr:annopr:v:330:y:2023:i:1:d:10.1007_s10479-022-04522-9
    DOI: 10.1007/s10479-022-04522-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04522-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04522-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ing-Haw Cheng & Wei Xiong, 2014. "Financialization of Commodity Markets," Annual Review of Financial Economics, Annual Reviews, vol. 6(1), pages 419-441, December.
    2. Salisu, Afees A. & Akanni, Lateef & Raheem, Ibrahim, 2020. "The COVID-19 global fear index and the predictability of commodity price returns," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    3. Jian Yang & R. Brian Balyeat & David J. Leatham, 2005. "Futures Trading Activity and Commodity Cash Price Volatility," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 32(1‐2), pages 297-323, January.
    4. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    5. Ali, Sajid & Bouri, Elie & Czudaj, Robert Lukas & Shahzad, Syed Jawad Hussain, 2020. "Revisiting the valuable roles of commodities for international stock markets," Resources Policy, Elsevier, vol. 66(C).
    6. Viral V. Acharya & Lasse H. Pedersen & Thomas Philippon & Matthew Richardson, 2017. "Measuring Systemic Risk," The Review of Financial Studies, Society for Financial Studies, vol. 30(1), pages 2-47.
    7. Viktor Manahov, 2018. "The rise of the machines in commodities markets: new evidence obtained using Strongly Typed Genetic Programming," Annals of Operations Research, Springer, vol. 260(1), pages 321-352, January.
    8. Duc Khuong Nguyen & Thomas Walther, 2020. "Modeling and forecasting commodity market volatility with long‐term economic and financial variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 126-142, March.
    9. Christoffersen, Peter & Lunde, Asger & Olesen, Kasper V., 2019. "Factor Structure in Commodity Futures Return and Volatility," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 54(3), pages 1083-1115, June.
    10. Stavros Degiannakis, 2008. "ARFIMAX and ARFIMAX-TARCH realized volatility modeling," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(10), pages 1169-1180.
    11. Uddin, Gazi Salah & Rahman, Md Lutfur & Shahzad, Syed Jawad Hussain & Rehman, Mobeen Ur, 2018. "Supply and demand driven oil price changes and their non-linear impact on precious metal returns: A Markov regime switching approach," Energy Economics, Elsevier, vol. 73(C), pages 108-121.
    12. Figuerola-Ferretti, Isabel & McCrorie, J. Roderick & Paraskevopoulos, Ioannis, 2020. "Mild explosivity in recent crude oil prices," Energy Economics, Elsevier, vol. 87(C).
    13. Vivian, Andrew & Wohar, Mark E., 2012. "Commodity volatility breaks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(2), pages 395-422.
    14. Kruse, Robinson & Wegener, Christoph, 2020. "Time-varying persistence in real oil prices and its determinant," Energy Economics, Elsevier, vol. 85(C).
    15. Ilyes Abid & Abderrazak Dhaoui & Stéphane Goutte & Khaled Guesmi, 2020. "Hedging and diversification across commodity assets," Applied Economics, Taylor & Francis Journals, vol. 52(23), pages 2472-2492, May.
    16. Peter C. B. Phillips & Shuping Shi & Jun Yu, 2015. "Testing For Multiple Bubbles: Limit Theory Of Real‐Time Detectors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56, pages 1079-1134, November.
    17. Sensoy, Ahmet, 2013. "Dynamic relationship between precious metals," Resources Policy, Elsevier, vol. 38(4), pages 504-511.
    18. Bouri, Elie & Lucey, Brian & Saeed, Tareq & Vo, Xuan Vinh, 2020. "Extreme spillovers across Asian-Pacific currencies: A quantile-based analysis," International Review of Financial Analysis, Elsevier, vol. 72(C).
    19. Akihiro Omura & Neda Todorova, 2019. "The quantile dependence of commodity futures markets on news sentiment," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(7), pages 818-837, July.
    20. Scott R. Baker & Nicholas Bloom & Steven J. Davis & Kyle J. Kost & Marco C. Sammon & Tasaneeya Viratyosin, 2020. "The Unprecedented Stock Market Impact of COVID-19," NBER Working Papers 26945, National Bureau of Economic Research, Inc.
    21. Junttila, Juha & Pesonen, Juho & Raatikainen, Juhani, 2018. "Commodity market based hedging against stock market risk in times of financial crisis: The case of crude oil and gold," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 56(C), pages 255-280.
    22. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    23. Silvennoinen, Annastiina & Thorp, Susan, 2013. "Financialization, crisis and commodity correlation dynamics," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 24(C), pages 42-65.
    24. Shuping Shi & Peter C. B. Phillips & Stan Hurn, 2018. "Change Detection and the Causal Impact of the Yield Curve," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 966-987, November.
    25. Bouri, Elie & Lucey, Brian & Saeed, Tareq & Vo, Xuan Vinh, 2021. "The realized volatility of commodity futures: Interconnectedness and determinants#," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 139-151.
    26. Meng, Juan & Nie, He & Mo, Bin & Jiang, Yonghong, 2020. "Risk spillover effects from global crude oil market to China’s commodity sectors," Energy, Elsevier, vol. 202(C).
    27. Baur, Dirk G. & Dimpfl, Thomas, 2018. "The asymmetric return-volatility relationship of commodity prices," Energy Economics, Elsevier, vol. 76(C), pages 378-387.
    28. Andriosopoulos, Kostas & Galariotis, Emilios & Spyrou, Spyros, 2017. "Contagion, volatility persistence and volatility spill-overs: The case of energy markets during the European financial crisis," Energy Economics, Elsevier, vol. 66(C), pages 217-227.
    29. Richard Barichello, 2020. "The COVID‐19 pandemic: Anticipating its effects on Canada's agricultural trade," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 68(2), pages 219-224, June.
    30. Dutta, Anupam & Bouri, Elie & Roubaud, David, 2019. "Nonlinear relationships amongst the implied volatilities of crude oil and precious metals," Resources Policy, Elsevier, vol. 61(C), pages 473-478.
    31. Tom Erik Sønsteng Henriksen & Alois Pichler & Sjur Westgaard & Stein Frydenberg, 2019. "Can commodities dominate stock and bond portfolios?," Annals of Operations Research, Springer, vol. 282(1), pages 155-177, November.
    32. Nazlioglu, Saban & Erdem, Cumhur & Soytas, Ugur, 2013. "Volatility spillover between oil and agricultural commodity markets," Energy Economics, Elsevier, vol. 36(C), pages 658-665.
    33. Mensi, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong & Yoon, Seong-Min, 2014. "Dynamic spillovers among major energy and cereal commodity prices," Energy Economics, Elsevier, vol. 43(C), pages 225-243.
    34. Xun Lu & Kin Lai & Liang Liang, 2014. "Portfolio value-at-risk estimation in energy futures markets with time-varying copula-GARCH model," Annals of Operations Research, Springer, vol. 219(1), pages 333-357, August.
    35. Luo, Jiawen & Klein, Tony & Ji, Qiang & Hou, Chenghan, 2019. "Forecasting Realized Volatility of Agricultural Commodity Futures with Infinite Hidden Markov HAR Models," QBS Working Paper Series 2019/10, Queen's University Belfast, Queen's Business School.
    36. Peter C. B. Phillips & Shuping Shi & Jun Yu, 2015. "Testing For Multiple Bubbles: Limit Theory Of Real‐Time Detectors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(4), pages 1079-1134, November.
    37. Sumudu W. Watugala, 2019. "Economic uncertainty, trading activity, and commodity futures volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(8), pages 921-945, August.
    38. Hu, Min & Zhang, Dayong & Ji, Qiang & Wei, Lijian, 2020. "Macro factors and the realized volatility of commodities: A dynamic network analysis," Resources Policy, Elsevier, vol. 68(C).
    39. Topaloglou, Nikolas & Vladimirou, Hercules & Zenios, Stavros A., 2020. "Integrated dynamic models for hedging international portfolio risks," European Journal of Operational Research, Elsevier, vol. 285(1), pages 48-65.
    40. López Cabrera, Brenda & Schulz, Franziska, 2016. "Volatility linkages between energy and agricultural commodity prices," Energy Economics, Elsevier, vol. 54(C), pages 190-203.
    41. Corbet, Shaen & Larkin, Charles & Lucey, Brian, 2020. "The contagion effects of the COVID-19 pandemic: Evidence from gold and cryptocurrencies," Finance Research Letters, Elsevier, vol. 35(C).
    42. Ji, Qiang & Bouri, Elie & Roubaud, David & Shahzad, Syed Jawad Hussain, 2018. "Risk spillover between energy and agricultural commodity markets: A dependence-switching CoVaR-copula model," Energy Economics, Elsevier, vol. 75(C), pages 14-27.
    43. Mo, Di & Gupta, Rakesh & Li, Bin & Singh, Tarlok, 2018. "The macroeconomic determinants of commodity futures volatility: Evidence from Chinese and Indian markets," Economic Modelling, Elsevier, vol. 70(C), pages 543-560.
    44. Claude B. Erb & Campbell R. Harvey, 2006. "The Strategic and Tactical Value of Commodity Futures," Financial Analysts Journal, Taylor & Francis Journals, vol. 62(2), pages 69-97, March.
    45. Kang, Sang Hoon & McIver, Ron & Yoon, Seong-Min, 2017. "Dynamic spillover effects among crude oil, precious metal, and agricultural commodity futures markets," Energy Economics, Elsevier, vol. 62(C), pages 19-32.
    46. Etienne, Xiaoli L. & Irwin, Scott H. & Garcia, Philip, 2014. "Bubbles in food commodity markets: Four decades of evidence," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 129-155.
    47. Mensi, Walid & Tiwari, Aviral & Bouri, Elie & Roubaud, David & Al-Yahyaee, Khamis H., 2017. "The dependence structure across oil, wheat, and corn: A wavelet-based copula approach using implied volatility indexes," Energy Economics, Elsevier, vol. 66(C), pages 122-139.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehmet Balcilar & Ojonugwa Usman & Busra Agan, 2024. "On the connectedness of commodity markets: A critical and selective survey of empirical studies and bibliometric analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 38(1), pages 97-136, February.
    2. Caporin, Massimiliano & Naeem, Muhammad Abubakr & Arif, Muhammad & Hasan, Mudassar & Vo, Xuan Vinh & Hussain Shahzad, Syed Jawad, 2021. "Asymmetric and time-frequency spillovers among commodities using high-frequency data," Resources Policy, Elsevier, vol. 70(C).
    3. Guhathakurta, Kousik & Dash, Saumya Ranjan & Maitra, Debasish, 2020. "Period specific volatility spillover based connectedness between oil and other commodity prices and their portfolio implications," Energy Economics, Elsevier, vol. 85(C).
    4. Farid, Saqib & Naeem, Muhammad Abubakr & Paltrinieri, Andrea & Nepal, Rabindra, 2022. "Impact of COVID-19 on the quantile connectedness between energy, metals and agriculture commodities," Energy Economics, Elsevier, vol. 109(C).
    5. Zhou, Xiaoran & Enilov, Martin & Parhi, Mamata, 2024. "Does oil spin the commodity wheel? Quantile connectedness with a common factor error structure across energy and agricultural markets," Energy Economics, Elsevier, vol. 132(C).
    6. Farid, Saqib & Kayani, Ghulam Mujtaba & Naeem, Muhammad Abubakr & Shahzad, Syed Jawad Hussain, 2021. "Intraday volatility transmission among precious metals, energy and stocks during the COVID-19 pandemic," Resources Policy, Elsevier, vol. 72(C).
    7. Shahzad, Farrukh & Bouri, Elie & Mokni, Khaled & Ajmi, Ahdi Noomen, 2021. "Energy, agriculture, and precious metals: Evidence from time-varying Granger causal relationships for both return and volatility," Resources Policy, Elsevier, vol. 74(C).
    8. Maitra, Debasish & Guhathakurta, Kousik & Kang, Sang Hoon, 2021. "The good, the bad and the ugly relation between oil and commodities: An analysis of asymmetric volatility connectedness and portfolio implications," Energy Economics, Elsevier, vol. 94(C).
    9. Xu Zhang & Xian Yang & Jianping Li & Jun Hao, 2023. "Contemporaneous and noncontemporaneous idiosyncratic risk spillovers in commodity futures markets: A novel network topology approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(6), pages 705-733, June.
    10. Kang, Sang Hoon & McIver, Ron & Yoon, Seong-Min, 2017. "Dynamic spillover effects among crude oil, precious metal, and agricultural commodity futures markets," Energy Economics, Elsevier, vol. 62(C), pages 19-32.
    11. Tongshuai Qiao & Liyan Han, 2023. "COVID‐19 and tail risk contagion across commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(2), pages 242-272, February.
    12. Muhammad Abubakr Naeem & Saqib Farid & Safwan Mohd Nor & Syed Jawad Hussain Shahzad, 2021. "Spillover and Drivers of Uncertainty among Oil and Commodity Markets," Mathematics, MDPI, vol. 9(4), pages 1-26, February.
    13. Gong, Xu & Xu, Jun, 2022. "Geopolitical risk and dynamic connectedness between commodity markets," Energy Economics, Elsevier, vol. 110(C).
    14. Naeem, Muhammad Abubakr & Hasan, Mudassar & Arif, Muhammad & Suleman, Muhammad Tahir & Kang, Sang Hoon, 2022. "Oil and gold as a hedge and safe-haven for metals and agricultural commodities with portfolio implications," Energy Economics, Elsevier, vol. 105(C).
    15. Zhu, Bo & Lin, Renda & Deng, Yuanyue & Chen, Pingshe & Chevallier, Julien, 2021. "Intersectoral systemic risk spillovers between energy and agriculture under the financial and COVID-19 crises," Economic Modelling, Elsevier, vol. 105(C).
    16. Cui, Jinxin & Maghyereh, Aktham, 2023. "Higher-order moment risk connectedness and optimal investment strategies between international oil and commodity futures markets: Insights from the COVID-19 pandemic and Russia-Ukraine conflict," International Review of Financial Analysis, Elsevier, vol. 86(C).
    17. Luo, Jiawen & Ji, Qiang, 2018. "High-frequency volatility connectedness between the US crude oil market and China's agricultural commodity markets," Energy Economics, Elsevier, vol. 76(C), pages 424-438.
    18. Balcilar, Mehmet & Gabauer, David & Umar, Zaghum, 2021. "Crude Oil futures contracts and commodity markets: New evidence from a TVP-VAR extended joint connectedness approach," Resources Policy, Elsevier, vol. 73(C).
    19. Umar, Zaghum & Jareño, Francisco & Escribano, Ana, 2021. "Agricultural commodity markets and oil prices: An analysis of the dynamic return and volatility connectedness," Resources Policy, Elsevier, vol. 73(C).
    20. Mensi, Walid & Rehman, Mobeen Ur & Gök, Remzi & Gemici, Eray & Vo, Xuan Vinh, 2025. "Risk spillovers and diversification benefits between crude oil and agricultural commodity futures markets," Research in International Business and Finance, Elsevier, vol. 73(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:330:y:2023:i:1:d:10.1007_s10479-022-04522-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.