IDEAS home Printed from https://ideas.repec.org/a/eee/jocoma/v36y2024ics240585132400062x.html
   My bibliography  Save this article

Asymmetric multi-scale systemic risk spillovers across international commodity futures markets: The role of infectious disease uncertainty

Author

Listed:
  • Zhu, Yanli
  • Yang, Xian
  • Zhang, Chuanhai
  • Liu, Sihan
  • Li, Jiayi

Abstract

This paper investigates the role of infectious disease uncertainty on multi-scale risk spillovers and portfolio implications across 12 international commodity futures markets from January 2006 to August 2022. We use wavelet packet decomposition and a novel risk spillover network topology approach based on a smooth transition vector autoregression model. The main findings are summarized as follows. First, there is an obvious asymmetry in spillover effects, i.e., the intensity of risk spillovers increases significantly during periods of high infectious disease uncertainty, and clear evidence of time-varying total spillovers across various regimes and frequencies. Second, cross-category risk spillovers are more pronounced in high-uncertainty regimes, while risk networks tend to cluster within the same category during low-uncertainty regimes. Third, the role of commodity futures in the risk spillover networks varies across different time scales and regimes, with gold consistently acting as a stable net risk transmitter. We also develop optimal portfolio strategies across commodity futures markets at different time scales and regimes based on the risk spillover analysis.

Suggested Citation

  • Zhu, Yanli & Yang, Xian & Zhang, Chuanhai & Liu, Sihan & Li, Jiayi, 2024. "Asymmetric multi-scale systemic risk spillovers across international commodity futures markets: The role of infectious disease uncertainty," Journal of Commodity Markets, Elsevier, vol. 36(C).
  • Handle: RePEc:eee:jocoma:v:36:y:2024:i:c:s240585132400062x
    DOI: 10.1016/j.jcomm.2024.100443
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S240585132400062X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jcomm.2024.100443?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmed, Abdullahi D. & Huo, Rui, 2021. "Volatility transmissions across international oil market, commodity futures and stock markets: Empirical evidence from China," Energy Economics, Elsevier, vol. 93(C).
    2. Berger, Theo & Gençay, Ramazan, 2018. "Improving daily Value-at-Risk forecasts: The relevance of short-run volatility for regulatory quality assessment," Journal of Economic Dynamics and Control, Elsevier, vol. 92(C), pages 30-46.
    3. Song, Ying & Bouri, Elie & Ghosh, Sajal & Kanjilal, Kakali, 2021. "Rare earth and financial markets: Dynamics of return and volatility connectedness around the COVID-19 outbreak," Resources Policy, Elsevier, vol. 74(C).
    4. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    5. Viral V. Acharya & Lasse H. Pedersen & Thomas Philippon & Matthew Richardson, 2017. "Measuring Systemic Risk," The Review of Financial Studies, Society for Financial Studies, vol. 30(1), pages 2-47.
    6. Evrim Mandacı, Pınar & Cagli, Efe Çaglar & Taşkın, Dilvin, 2020. "Dynamic connectedness and portfolio strategies: Energy and metal markets," Resources Policy, Elsevier, vol. 68(C).
    7. Altig, Dave & Baker, Scott & Barrero, Jose Maria & Bloom, Nicholas & Bunn, Philip & Chen, Scarlet & Davis, Steven J. & Leather, Julia & Meyer, Brent & Mihaylov, Emil & Mizen, Paul & Parker, Nicholas &, 2020. "Economic uncertainty before and during the COVID-19 pandemic," Journal of Public Economics, Elsevier, vol. 191(C).
    8. Nekhili, Ramzi & Mensi, Walid & Vo, Xuan Vinh, 2021. "Multiscale spillovers and connectedness between gold, copper, oil, wheat and currency markets," Resources Policy, Elsevier, vol. 74(C).
    9. Bakas, Dimitrios & Triantafyllou, Athanasios, 2020. "Commodity price volatility and the economic uncertainty of pandemics," Economics Letters, Elsevier, vol. 193(C).
    10. Albulescu, Claudiu Tiberiu & Tiwari, Aviral Kumar & Ji, Qiang, 2020. "Copula-based local dependence among energy, agriculture and metal commodities markets," Energy, Elsevier, vol. 202(C).
    11. Alomari, Mohammad & Mensi, Walid & Vo, Xuan Vinh & Kang, Sang Hoon, 2022. "Extreme return spillovers and connectedness between crude oil and precious metals futures markets: Implications for portfolio management," Resources Policy, Elsevier, vol. 79(C).
    12. David C. Broadstock & Ioannis Chatziantoniou & David Gabauer, 2022. "Minimum Connectedness Portfolios and the Market for Green Bonds: Advocating Socially Responsible Investment (SRI) Activity," Springer Books, in: Christos Floros & Ioannis Chatziantoniou (ed.), Applications in Energy Finance, chapter 0, pages 217-253, Springer.
    13. Bouri, Elie & Lei, Xiaojie & Xu, Yahua & Zhang, Hongwei, 2023. "Connectedness in implied higher-order moments of precious metals and energy markets," Energy, Elsevier, vol. 263(PB).
    14. Ghosh, Bikramaditya & Pham, Linh & Teplova, Tamara & Umar, Zaghum, 2023. "COVID-19 and the quantile connectedness between energy and metal markets," Energy Economics, Elsevier, vol. 117(C).
    15. Jain, Prachi & Maitra, Debasish & McIver, Ron P. & Kang, Sang Hoon, 2023. "Quantile dependencies and connectedness between stock and precious metals markets," Journal of Commodity Markets, Elsevier, vol. 30(C).
    16. Scott R. Baker & Nicholas Bloom & Steven J. Davis & Kyle J. Kost & Marco C. Sammon & Tasaneeya Viratyosin, 2020. "The Unprecedented Stock Market Impact of COVID-19," NBER Working Papers 26945, National Bureau of Economic Research, Inc.
    17. Annastiina Silvennoinen & Susan Thorp, 2016. "Crude Oil and Agricultural Futures: An Analysis of Correlation Dynamics," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(6), pages 522-544, June.
    18. Polat, Onur & Ertuğrul, Hasan Murat & Sakarya, Burçhan & Akgül, Ali, 2024. "TVP-VAR based time and frequency domain food & energy commodities connectedness an analysis for financial/geopolitical turmoil episodes," Applied Energy, Elsevier, vol. 357(C).
    19. Umar, Zaghum & Nasreen, Samia & Solarin, Sakiru Adebola & Tiwari, Aviral Kumar, 2019. "Exploring the time and frequency domain connectedness of oil prices and metal prices," Resources Policy, Elsevier, vol. 64(C).
    20. Dahl, Roy Endré & Oglend, Atle & Yahya, Muhammad, 2020. "Dynamics of volatility spillover in commodity markets: Linking crude oil to agriculture," Journal of Commodity Markets, Elsevier, vol. 20(C).
    21. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    22. Binqing Xiao & Honghai Yu & Libing Fang & Sifang Ding, 2020. "Estimating the connectedness of commodity futures using a network approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(4), pages 598-616, April.
    23. Shahzad, Farrukh & Bouri, Elie & Mokni, Khaled & Ajmi, Ahdi Noomen, 2021. "Energy, agriculture, and precious metals: Evidence from time-varying Granger causal relationships for both return and volatility," Resources Policy, Elsevier, vol. 74(C).
    24. Timo Teräsvirta & Yukai Yang, 2014. "Linearity and Misspecification Tests for Vector Smooth Transition Regression Models," CREATES Research Papers 2014-04, Department of Economics and Business Economics, Aarhus University.
    25. Wu, You & Ren, Wenting & Wan, Jieru & Liu, Xiaoxue, 2023. "Time-frequency volatility connectedness between fossil energy and agricultural commodities: Comparing the COVID-19 pandemic with the Russia-Ukraine conflict," Finance Research Letters, Elsevier, vol. 55(PA).
    26. Sun, Yanpeng & Mirza, Nawazish & Qadeer, Abdul & Hsueh, Hsin-Pei, 2021. "Connectedness between oil and agricultural commodity prices during tranquil and volatile period. Is crude oil a victim indeed?," Resources Policy, Elsevier, vol. 72(C).
    27. Cui, Jinxin & Maghyereh, Aktham, 2023. "Higher-order moment risk connectedness and optimal investment strategies between international oil and commodity futures markets: Insights from the COVID-19 pandemic and Russia-Ukraine conflict," International Review of Financial Analysis, Elsevier, vol. 86(C).
    28. Hanif, Waqas & Mensi, Walid & Vo, Xuan Vinh & BenSaïda, Ahmed & Hernandez, Jose Arreola & Kang, Sang Hoon, 2023. "Dependence and risk management of portfolios of metals and agricultural commodity futures," Resources Policy, Elsevier, vol. 82(C).
    29. Ben Ameur, Hachmi & Ftiti, Zied & Louhichi, Waël, 2021. "Intraday spillover between commodity markets," Resources Policy, Elsevier, vol. 74(C).
    30. Ozcelebi, Oguzhan & Kang, Sang Hoon, 2024. "Extreme connectedness and network across financial assets and commodity futures markets," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
    31. Umar, Zaghum & Riaz, Yasir & Zaremba, Adam, 2021. "Patterns of Spillover in Energy, Agricultural, and Metal Markets: A Connectedness Analysis for Years 1780-2020," Finance Research Letters, Elsevier, vol. 43(C).
    32. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Filis, George, 2014. "Dynamic spillovers of oil price shocks and economic policy uncertainty," Energy Economics, Elsevier, vol. 44(C), pages 433-447.
    33. Jozef Baruník & Tomáš Křehlík, 2018. "Measuring the Frequency Dynamics of Financial Connectedness and Systemic Risk," Journal of Financial Econometrics, Oxford University Press, vol. 16(2), pages 271-296.
    34. Caggiano, Giovanni & Castelnuovo, Efrem & Figueres, Juan Manuel, 2017. "Economic policy uncertainty and unemployment in the United States: A nonlinear approach," Economics Letters, Elsevier, vol. 151(C), pages 31-34.
    35. Zhang, Tianding & Zeng, Song, 2023. "Dynamic comovement and extreme risk spillovers between international crude oil and China's non-ferrous metal futures market," Resources Policy, Elsevier, vol. 80(C).
    36. Farid, Saqib & Naeem, Muhammad Abubakr & Paltrinieri, Andrea & Nepal, Rabindra, 2022. "Impact of COVID-19 on the quantile connectedness between energy, metals and agriculture commodities," Energy Economics, Elsevier, vol. 109(C).
    37. Hernandez, Jose Areola & Shahzad, Syed Jawad Hussain & Uddin, Gazi Salah & Kang, Sang Hoon, 2019. "Can agricultural and precious metal commodities diversify and hedge extreme downside and upside oil market risk? An extreme quantile approach," Resources Policy, Elsevier, vol. 62(C), pages 588-601.
    38. Shahzad, Syed Jawad Hussain & Hernandez, Jose Arreola & Al-Yahyaee, Khamis Hamed & Jammazi, Rania, 2018. "Asymmetric risk spillovers between oil and agricultural commodities," Energy Policy, Elsevier, vol. 118(C), pages 182-198.
    39. Mensi, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong & Yoon, Seong-Min, 2014. "Dynamic spillovers among major energy and cereal commodity prices," Energy Economics, Elsevier, vol. 43(C), pages 225-243.
    40. Wen, Fenghua & Liu, Zhen & Dai, Zhifeng & He, Shaoyi & Liu, Wenhua, 2022. "Multi-scale risk contagion among international oil market, Chinese commodity market and Chinese stock market: A MODWT-Vine quantile regression approach," Energy Economics, Elsevier, vol. 109(C).
    41. Adams, Zeno & Füss, Roland & Gropp, Reint, 2014. "Spillover Effects among Financial Institutions: A State-Dependent Sensitivity Value-at-Risk Approach," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(3), pages 575-598, June.
    42. Tomohiro Ando & Matthew Greenwood-Nimmo & Yongcheol Shin, 2022. "Quantile Connectedness: Modeling Tail Behavior in the Topology of Financial Networks," Management Science, INFORMS, vol. 68(4), pages 2401-2431, April.
    43. Wang, Yihan & Bouri, Elie & Fareed, Zeeshan & Dai, Yuhui, 2022. "Geopolitical risk and the systemic risk in the commodity markets under the war in Ukraine," Finance Research Letters, Elsevier, vol. 49(C).
    44. Zhang, Xu & Yang, Xian & He, Qizhi, 2022. "Multi-scale systemic risk and spillover networks of commodity markets in the bullish and bearish regimes," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    45. Hung, Ngo Thai, 2021. "Oil prices and agricultural commodity markets: Evidence from pre and during COVID-19 outbreak," Resources Policy, Elsevier, vol. 73(C).
    46. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    47. Yahya, Muhammad & Oglend, Atle & Dahl, Roy Endré, 2019. "Temporal and spectral dependence between crude oil and agricultural commodities: A wavelet-based copula approach," Energy Economics, Elsevier, vol. 80(C), pages 277-296.
    48. Xu Zhang & Xian Yang & Jianping Li & Jun Hao, 2023. "Contemporaneous and noncontemporaneous idiosyncratic risk spillovers in commodity futures markets: A novel network topology approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(6), pages 705-733, June.
    49. López Cabrera, Brenda & Schulz, Franziska, 2016. "Volatility linkages between energy and agricultural commodity prices," Energy Economics, Elsevier, vol. 54(C), pages 190-203.
    50. Chen, Hao & Xu, Chao & Peng, Yun, 2022. "Time-frequency connectedness between energy and nonenergy commodity markets during COVID-19: Evidence from China," Resources Policy, Elsevier, vol. 78(C).
    51. Wang, Kai-Hua & Kan, Jia-Min & Qiu, Lianhong & Xu, Shulin, 2023. "Climate policy uncertainty, oil price and agricultural commodity: From quantile and time perspective," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 256-272.
    52. Rehman, Mobeen Ur & Vo, Xuan Vinh & Ko, Hee-Un & Ahmad, Nasir & Kang, Sang Hoon, 2023. "Quantile connectedness between Chinese stock and commodity futures markets," Research in International Business and Finance, Elsevier, vol. 64(C).
    53. Gozgor, Giray & Khalfaoui, Rabeh & Yarovaya, Larisa, 2023. "Global supply chain pressure and commodity markets: Evidence from multiple wavelet and quantile connectedness analyses," Finance Research Letters, Elsevier, vol. 54(C).
    54. Tiwari, Aviral Kumar & Abakah, Emmanuel Joel Aikins & Adewuyi, Adeolu O. & Lee, Chien-Chiang, 2022. "Quantile risk spillovers between energy and agricultural commodity markets: Evidence from pre and during COVID-19 outbreak," Energy Economics, Elsevier, vol. 113(C).
    55. Ji, Qiang & Bouri, Elie & Roubaud, David & Shahzad, Syed Jawad Hussain, 2018. "Risk spillover between energy and agricultural commodity markets: A dependence-switching CoVaR-copula model," Energy Economics, Elsevier, vol. 75(C), pages 14-27.
    56. Nikolaos Antonakakis & Ioannis Chatziantoniou & David Gabauer, 2020. "Refined Measures of Dynamic Connectedness based on Time-Varying Parameter Vector Autoregressions," JRFM, MDPI, vol. 13(4), pages 1-23, April.
    57. Kang, Sang Hoon & McIver, Ron & Yoon, Seong-Min, 2017. "Dynamic spillover effects among crude oil, precious metal, and agricultural commodity futures markets," Energy Economics, Elsevier, vol. 62(C), pages 19-32.
    58. Jian Yang & Zheng Li & Hong Miao, 2021. "Volatility spillovers in commodity futures markets: A network approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(12), pages 1959-1987, December.
    59. Ren, Yinghua & Tan, Anqi & Zhu, Huiming & Zhao, Wanru, 2022. "Does economic policy uncertainty drive nonlinear risk spillover in the commodity futures market?," International Review of Financial Analysis, Elsevier, vol. 81(C).
    60. Zhuo Chen & Bo Yan & Hanwen Kang, 2022. "Dynamic correlation between crude oil and agricultural futures markets," Review of Development Economics, Wiley Blackwell, vol. 26(3), pages 1798-1849, August.
    61. Gong, Xu & Xu, Jun, 2022. "Geopolitical risk and dynamic connectedness between commodity markets," Energy Economics, Elsevier, vol. 110(C).
    62. Mensi, Walid & Rehman, Mobeen Ur & Vo, Xuan Vinh, 2020. "Spillovers and co-movements between precious metals and energy markets: Implications on portfolio management," Resources Policy, Elsevier, vol. 69(C).
    63. Dai, Xingyu & Li, Matthew C. & Xiao, Ling & Wang, Qunwei, 2022. "COVID-19 and China commodity price jump behavior: An information spillover and wavelet coherency analysis," Resources Policy, Elsevier, vol. 79(C).
    64. Kang, Sang Hoon & Tiwari, Aviral Kumar & Albulescu, Claudiu Tiberiu & Yoon, Seong-Min, 2019. "Exploring the time-frequency connectedness and network among crude oil and agriculture commodities V1," Energy Economics, Elsevier, vol. 84(C).
    65. Wang, Lu & Guan, Li & Ding, Qian & Zhang, Hongwei, 2023. "Asymmetric impact of COVID-19 news on the connectedness of the green energy, dirty energy, and non-ferrous metal markets," Energy Economics, Elsevier, vol. 126(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Xiaoran & Enilov, Martin & Parhi, Mamata, 2024. "Does oil spin the commodity wheel? Quantile connectedness with a common factor error structure across energy and agricultural markets," Energy Economics, Elsevier, vol. 132(C).
    2. Farid, Saqib & Naeem, Muhammad Abubakr & Paltrinieri, Andrea & Nepal, Rabindra, 2022. "Impact of COVID-19 on the quantile connectedness between energy, metals and agriculture commodities," Energy Economics, Elsevier, vol. 109(C).
    3. Wang, Jue & Zhou, Yuqin & Wu, Shan, 2025. "Quantile time-frequency connectedness and portfolio diversification: A study of clean energy and metal markets," Renewable Energy, Elsevier, vol. 238(C).
    4. Xu Zhang & Xian Yang & Jianping Li & Jun Hao, 2023. "Contemporaneous and noncontemporaneous idiosyncratic risk spillovers in commodity futures markets: A novel network topology approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(6), pages 705-733, June.
    5. Mehmet Balcilar & Ojonugwa Usman & Busra Agan, 2024. "On the connectedness of commodity markets: A critical and selective survey of empirical studies and bibliometric analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 38(1), pages 97-136, February.
    6. Cui, Jinxin & Maghyereh, Aktham, 2023. "Higher-order moment risk connectedness and optimal investment strategies between international oil and commodity futures markets: Insights from the COVID-19 pandemic and Russia-Ukraine conflict," International Review of Financial Analysis, Elsevier, vol. 86(C).
    7. Youtao Xiang & Sumuya Borjigin, 2024. "High–low volatility spillover network between economic policy uncertainty and commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(8), pages 1295-1319, August.
    8. Tiwari, Aviral Kumar & Abakah, Emmanuel Joel Aikins & Adewuyi, Adeolu O. & Lee, Chien-Chiang, 2022. "Quantile risk spillovers between energy and agricultural commodity markets: Evidence from pre and during COVID-19 outbreak," Energy Economics, Elsevier, vol. 113(C).
    9. Aloui, Riadh & Ben Jabeur, Sami & Rezgui, Hichem & Ben Arfi, Wissal, 2023. "Geopolitical risk and commodity future returns: Fresh insights from dynamic copula conditional value-at-risk approach," Resources Policy, Elsevier, vol. 85(PB).
    10. Wu, You & Ren, Wenting & Wan, Jieru & Liu, Xiaoxue, 2023. "Time-frequency volatility connectedness between fossil energy and agricultural commodities: Comparing the COVID-19 pandemic with the Russia-Ukraine conflict," Finance Research Letters, Elsevier, vol. 55(PA).
    11. Mensi, Walid & Rehman, Mobeen Ur & Gök, Remzi & Gemici, Eray & Vo, Xuan Vinh, 2025. "Risk spillovers and diversification benefits between crude oil and agricultural commodity futures markets," Research in International Business and Finance, Elsevier, vol. 73(PA).
    12. Wei, Yu & Wang, Yizhi & Vigne, Samuel A. & Ma, Zhenyu, 2023. "Alarming contagion effects: The dangerous ripple effect of extreme price spillovers across crude oil, carbon emission allowance, and agriculture futures markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    13. Balcilar, Mehmet & Gabauer, David & Umar, Zaghum, 2021. "Crude Oil futures contracts and commodity markets: New evidence from a TVP-VAR extended joint connectedness approach," Resources Policy, Elsevier, vol. 73(C).
    14. Adeleke, Musefiu A. & Awodumi, Olabanji B. & Adewuyi, Adeolu O., 2022. "Return and volatility connectedness among commodity markets during major crises periods: Static and dynamic analyses with asymmetries," Resources Policy, Elsevier, vol. 79(C).
    15. Cagli, Efe Caglar, 2023. "The volatility spillover between battery metals and future mobility stocks: Evidence from the time-varying frequency connectedness approach," Resources Policy, Elsevier, vol. 86(PA).
    16. Gunay, Samet & Kirimhan, Destan & Cevik, Emrah Ismail, 2024. "Commodity market downturn: Systemic risk and spillovers during left tail events," Journal of Commodity Markets, Elsevier, vol. 36(C).
    17. Cagli, Efe Caglar & Mandaci, Pinar Evrim & Taskin, Dilvin, 2023. "The volatility connectedness between agricultural commodity and agri businesses: Evidence from time-varying extended joint approach," Finance Research Letters, Elsevier, vol. 52(C).
    18. Chen, Xiangyu & Tongurai, Jittima, 2024. "Price spillovers and interdependences in China's agricultural commodity futures market: Evidence from the US-China trade dispute," International Review of Economics & Finance, Elsevier, vol. 96(PA).
    19. Naeem, Muhammad Abubakr & Karim, Sitara & Hasan, Mudassar & Lucey, Brian M. & Kang, Sang Hoon, 2022. "Nexus between oil shocks and agriculture commodities: Evidence from time and frequency domain," Energy Economics, Elsevier, vol. 112(C).
    20. Yaoxun Deng & Guobin Fang & Jun Zhang & Huimin Ma, 2024. "Dynamic Connectedness Among Oil, Food Commodity, and Renewable Energy Markets: Novel Perspective from Quantile Dependence and Deep Learning," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(3), pages 9935-9974, September.

    More about this item

    Keywords

    Infectious disease uncertainty; Commodity futures; Wavelet packet decomposition; Asymmetric risk spillover effects; Network topology;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jocoma:v:36:y:2024:i:c:s240585132400062x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jcomm .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.