IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i9p1648-d112190.html
   My bibliography  Save this article

The Impact of Climatic Change Adaptation on Agricultural Productivity in Central Chile: A Stochastic Production Frontier Approach

Author

Listed:
  • Lisandro Roco

    (Department of Economics and Institute of Applied Regional Economics (IDEAR), Universidad Católica del Norte, Antofagasta 1240000, Chile)

  • Boris Bravo-Ureta

    (Department of Agricultural and Resource Economics, University of Connecticut, Storrs 06269, CT, USA
    Department of Agricultural Economics, Universidad de Talca, Talca 3460000, Chile)

  • Alejandra Engler

    (Department of Agricultural Economics, Universidad de Talca, Talca 3460000, Chile
    Center for Socioeconomic Impact of Environmental Policies (CESIEP), Talca 3460000, Chile)

  • Roberto Jara-Rojas

    (Department of Agricultural Economics, Universidad de Talca, Talca 3460000, Chile
    Center for Socioeconomic Impact of Environmental Policies (CESIEP), Talca 3460000, Chile)

Abstract

Adaptation to climate change is imperative to sustain and promote agricultural productivity growth, and site-specific empirical evidence is needed to facilitate policy making. Therefore, this study analyses the impact of climate change adaptation on productivity for annual crops in Central Chile using a stochastic production frontier approach. The data come from a random sample of 265 farms located in four municipalities with different agro-climatic conditions. To measure climate change adaptation, a set of 14 practices was used in three different specifications: binary variable, count and index; representing decision, intensity and quality of adaptation, respectively. The aforementioned alternative variables were used in three different stochastic production frontier models. Results suggest that the use of adaptive practices had a significant and positive effect on productivity; the practice with the highest impact on productivity was irrigation improvement. Empirical results demonstrate the relevance of climate change adaptation on farmers’ productivity and enrich the discussion regarding the need to implement adaptation measures.

Suggested Citation

  • Lisandro Roco & Boris Bravo-Ureta & Alejandra Engler & Roberto Jara-Rojas, 2017. "The Impact of Climatic Change Adaptation on Agricultural Productivity in Central Chile: A Stochastic Production Frontier Approach," Sustainability, MDPI, vol. 9(9), pages 1-16, September.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:9:p:1648-:d:112190
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/9/1648/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/9/1648/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jean-Paul Chavas & Ragan Petrie & Michael Roth, 2005. "Farm Household Production Efficiency: Evidence from The Gambia," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(1), pages 160-179.
    2. Daniel Solís & Boris E. Bravo‐Ureta & Ricardo E. Quiroga, 2009. "Technical Efficiency among Peasant Farmers Participating in Natural Resource Management Programmes in Central America," Journal of Agricultural Economics, Wiley Blackwell, vol. 60(1), pages 202-219, February.
    3. Marc Jim Mariano & Renato Villano & Euan Fleming, 2011. "Technical Efficiency of Rice Farms in Different Agroclimatic Zones in the Philippines: An Application of a Stochastic Metafrontier Model," Asian Economic Journal, East Asian Economic Association, vol. 25(3), pages 245-269, September.
    4. Henderson, B. & Godde, C. & Medina-Hidalgo, D. & van Wijk, M. & Silvestri, S. & Douxchamps, S. & Stephenson, E. & Power, B. & Rigolot, C. & Cacho, O. & Herrero, M., 2016. "Closing system-wide yield gaps to increase food production and mitigate GHGs among mixed crop–livestock smallholders in Sub-Saharan Africa," Agricultural Systems, Elsevier, vol. 143(C), pages 106-113.
    5. Catherine Morrison Paul, 2003. "Productivity and Efficiency Measurement in Our “New Economy”: Determinants, Interactions, and Policy Relevance," Journal of Productivity Analysis, Springer, vol. 19(2), pages 161-177, April.
    6. Salvatore Di Falco & Marcella Veronesi & Mahmud Yesuf, 2011. "Does Adaptation to Climate Change Provide Food Security? A Micro-Perspective from Ethiopia," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(3), pages 825-842.
    7. Areal, Francisco J. & Tiffin, Richard & Balcombe, Kelvin G., 2012. "Provision of environmental output within a multi-output distance function approach," Ecological Economics, Elsevier, vol. 78(C), pages 47-54.
    8. Jones, Samantha, 2002. "A Framework for Understanding On-farm Environmental Degradation and Constraints to the Adoption of Soil Conservation Measures: Case Studies from Highland Tanzania and Thailand," World Development, Elsevier, vol. 30(9), pages 1607-1620, September.
    9. Boris Bravo-Ureta & Daniel Solís & Víctor Moreira López & José Maripani & Abdourahmane Thiam & Teodoro Rivas, 2007. "Technical efficiency in farming: a meta-regression analysis," Journal of Productivity Analysis, Springer, vol. 27(1), pages 57-72, February.
    10. Mukherjee, Deep & Bravo-Ureta, Boris E. & De Vries, Albert, 2013. "Dairy productivity and climatic conditions: econometric evidence from South-eastern united States," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 57(1), pages 1-18.
    11. Moniruzzaman, Shaikh, 2015. "Crop choice as climate change adaptation: Evidence from Bangladesh," Ecological Economics, Elsevier, vol. 118(C), pages 90-98.
    12. Zhihai Yang & Amin W. Mugera & Fan Zhang, 2016. "Investigating Yield Variability and Inefficiency in Rice Production: A Case Study in Central China," Sustainability, MDPI, vol. 8(8), pages 1-11, August.
    13. Mishra, Ashok K. & El-Osta, Hisham S. & Shaik, Saleem, 2010. "Succession Decisions in U.S. Family Farm Businesses," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 35(1), pages 1-20.
    14. Justice Tambo & Tahirou Abdoulaye, 2012. "Climate change and agricultural technology adoption: the case of drought tolerant maize in rural Nigeria," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(3), pages 277-292, March.
    15. Jeremy G. Weber & Nigel Key, 2012. "How much Do Decoupled Payments Affect Production? An Instrumental Variable Approach with Panel Data," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(1), pages 52-66.
    16. Giannis Karagiannis & Alexander Sarris, 2005. "Measuring and explaining scale efficiency with the parametric approach: the case of Greek tobacco growers," Agricultural Economics, International Association of Agricultural Economists, vol. 33(s3), pages 441-451, November.
    17. Ligia Alba Melo-Becerra & Antonio José Orozco-Gallo, 2017. "Technical efficiency for Colombian small crop and livestock farmers: A stochastic metafrontier approach for different production systems," Journal of Productivity Analysis, Springer, vol. 47(1), pages 1-16, February.
    18. Yigezu, Yigezu A. & Ahmed, Mohamed A. & Shideed, Kamil & Aw-Hassan, Aden & El-Shater, Tamer & Al-Atwan, Samman, 2013. "Implications of a shift in irrigation technology on resource use efficiency: A Syrian case," Agricultural Systems, Elsevier, vol. 118(C), pages 14-22.
    19. Sauer, Johannes & Park, Tim, 2009. "Organic farming in Scandinavia -- Productivity and market exit," Ecological Economics, Elsevier, vol. 68(8-9), pages 2243-2254, June.
    20. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    21. Gorton, Matthew & Davidova, Sophia, 2004. "Farm productivity and efficiency in the CEE applicant countries: a synthesis of results," Agricultural Economics, Blackwell, vol. 30(1), pages 1-16, January.
    22. Binam, Joachim Nyemeck & Tonye, Jean & wandji, Njankoua & Nyambi, Gwendoline & Akoa, Mireille, 2004. "Factors affecting the technical efficiency among smallholder farmers in the slash and burn agriculture zone of Cameroon," Food Policy, Elsevier, vol. 29(5), pages 531-545, October.
    23. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    24. Keith Fuglie & David Schimmelpfennig, 2010. "Introduction to the special issue on agricultural productivity growth: a closer look at large, developing countries," Journal of Productivity Analysis, Springer, vol. 33(3), pages 169-172, June.
    25. Oecd, 2009. "Climate Change and Africa," OECD Journal: General Papers, OECD Publishing, vol. 2009(1), pages 5-35.
    26. Kahil, Mohamed Taher & Connor, Jeffery D. & Albiac, Jose, 2015. "Efficient water management policies for irrigation adaptation to climate change in Southern Europe," Ecological Economics, Elsevier, vol. 120(C), pages 226-233.
    27. David Zilberman & Jinhua Zhao & Amir Heiman, 2012. "Adoption Versus Adaptation, with Emphasis on Climate Change," Annual Review of Resource Economics, Annual Reviews, vol. 4(1), pages 27-53, August.
    28. Greene, William H., 1980. "Maximum likelihood estimation of econometric frontier functions," Journal of Econometrics, Elsevier, vol. 13(1), pages 27-56, May.
    29. Sanzidur Rahman, 2010. "Women’s Labour Contribution to Productivity and Efficiency in Agriculture: Empirical Evidence From Bangladesh," Journal of Agricultural Economics, Wiley Blackwell, vol. 61(2), pages 318-342, June.
    30. A. Colin Cameron & Pravin K. Trivedi, 2010. "Microeconometrics Using Stata, Revised Edition," Stata Press books, StataCorp LP, number musr, March.
    31. Talip Kilic & Calogero Carletto & Juna Miluka & Sara Savastano, 2009. "Rural nonfarm income and its impact on agriculture: evidence from Albania," Agricultural Economics, International Association of Agricultural Economists, vol. 40(2), pages 139-160, March.
    32. Battese, George E. & Coelli, Tim J., 1988. "Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data," Journal of Econometrics, Elsevier, vol. 38(3), pages 387-399, July.
    33. Sanzidur Rahman & Aree Wiboonpongse & Songsak Sriboonchitta & Yaovarate Chaovanapoonphol, 2009. "Production Efficiency of Jasmine Rice Producers in Northern and North‐eastern Thailand," Journal of Agricultural Economics, Wiley Blackwell, vol. 60(2), pages 419-435, June.
    34. Temesgen Tadesse Deressa & Rashid M. Hassan, 2009. "Economic Impact of Climate Change on Crop Production in Ethiopia: Evidence from Cross-section Measures," Journal of African Economies, Centre for the Study of African Economies, vol. 18(4), pages 529-554, August.
    35. Sarris, Alexander H. & Savastano, Sara & Christiaensen, Luc J.M., 2006. "The Role of Agriculture in Reducing Poverty in Tanzania: A Household Perspective from Rural Kilimanjaro and Ruvuma," 2006 Annual Meeting, August 12-18, 2006, Queensland, Australia 25573, International Association of Agricultural Economists.
    36. Phillips, Joseph M, 1994. "Farmer Education and Farmer Efficiency: A Meta-Analysis," Economic Development and Cultural Change, University of Chicago Press, vol. 43(1), pages 149-165, October.
    37. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    38. Amarender Reddy, A. & Bantilan, Ma Cynthia S., 2012. "Competitiveness and technical efficiency: Determinants in the groundnut oil sector of India," Food Policy, Elsevier, vol. 37(3), pages 255-263.
    39. Maria Carmen Lemos & Christine J. Kirchhoff & Vijay Ramprasad, 2012. "Narrowing the climate information usability gap," Nature Climate Change, Nature, vol. 2(11), pages 789-794, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gershom Endelani Mwalupaso & Shangao Wang & Sanzidur Rahman & Essiagnon John-Philippe Alavo & Xu Tian, 2019. "Agricultural Informatization and Technical Efficiency in Maize Production in Zambia," Sustainability, MDPI, vol. 11(8), pages 1-17, April.
    2. Jordán, Cristian & Speelman, Stijn, 2020. "On-farm adoption of irrigation technologies in two irrigated valleys in Central Chile: The effect of relative abundance of water resources," Agricultural Water Management, Elsevier, vol. 236(C).
    3. Tesfaye C. Cholo & Luuk Fleskens & Diana Sietz & Jack Peerlings, 2018. "Is Land Fragmentation Facilitating or Obstructing Adoption of Climate Adaptation Measures in Ethiopia?," Sustainability, MDPI, vol. 10(7), pages 1-14, June.
    4. Anna Gaviglio & Rosalia Filippini & Fabio Albino Madau & Maria Elena Marescotti & Eugenio Demartini, 2021. "Technical efficiency and productivity of farms: a periurban case study analysis," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 9(1), pages 1-18, December.
    5. William Adzawla & Hamdiyah Alhassan, 2021. "Effects of climate adaptation on technical efficiency of maize production in Northern Ghana," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 9(1), pages 1-18, December.
    6. Paul Maganga Nsimbila, 2021. "Productivity and Technical Efficiency Variability among Small-Holder Cotton Farmers in Tanzania," Journal of Public Administration and Governance, Macrothink Institute, vol. 11(2), pages 277293-2772, December.
    7. Jeder, Houcine & Hamza, Emna Ben & Belhouchette, Hatem & Mzoughi, Aida, 2019. "Resilience of irrigated agricultural systems to climate change challenges in central-eastern region of Tunisia," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 0(Issue 1).
    8. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    9. Zoltán Bakucs & Imre Fertő & Enikő Vígh, 2020. "Crop Productivity and Climatic Conditions: Evidence from Hungary," Agriculture, MDPI, vol. 10(9), pages 1-12, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Orkhan Guliyev & Aijun Liu & Gershom Endelani Mwalupaso & Jarkko Niemi, 2019. "The Determinants of Technical Efficiency of Hazelnut Production in Azerbaijan: An Analysis of the Role of NGOs," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
    2. Jara-Rojas, Roberto & Bravo-Ureta, Boris E. & Moreira, Victor H. & Diaz, Jose, 2012. "Natural Resource Conservation and Technical Efficiency from Small-scale Farmers in Central Chile," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126227, International Association of Agricultural Economists.
    3. Gershom Endelani Mwalupaso & Shangao Wang & Sanzidur Rahman & Essiagnon John-Philippe Alavo & Xu Tian, 2019. "Agricultural Informatization and Technical Efficiency in Maize Production in Zambia," Sustainability, MDPI, vol. 11(8), pages 1-17, April.
    4. Rouf, Abdur, 2015. "Conventional vs Natural Flood Control and Drainage Managements in a Tidal Coastal Zone: An Evaluation from a Productive Efficiency Perspective," 89th Annual Conference, April 13-15, 2015, Warwick University, Coventry, UK 256023, Agricultural Economics Society.
    5. Imori, Denise & Guilhoto, Joaquim José Martins & Postali, Fernando Antonio Slaibe, 2012. "Eficiência técnica das agropecuárias familiar e patronal – diferenças regionais no Brasil [Technical efficiency of agricultural households and business - regional differences in Brazil]," MPRA Paper 46954, University Library of Munich, Germany.
    6. Saldias, Rodrigo & von Cramon-Taubadel, Stephan, 2012. "Access to credit and the determinants of technical inefficiency among specialized small farmers in Chile," DARE Discussion Papers 1211, Georg-August University of Göttingen, Department of Agricultural Economics and Rural Development (DARE).
    7. Wollni, Meike & Brümmer, Bernhard, 2012. "Productive efficiency of specialty and conventional coffee farmers in Costa Rica: Accounting for technological heterogeneity and self-selection," Food Policy, Elsevier, vol. 37(1), pages 67-76.
    8. Zhihai Yang & Amin W. Mugera & Ning Yin & Yumeng Wang, 2018. "Soil conservation practices and production efficiency of smallholder farms in Central China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(4), pages 1517-1533, August.
    9. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    10. Gabriela Pérez Quesada, 2017. "Technical efficiency of dairy farms in Uruguay: a stochastic production frontier analysis," Documentos de Trabajo (working papers) 0517, Department of Economics - dECON.
    11. Álvaro Ramírez Suárez, 2013. "Análisis de eficiencia económica de fincas arroceras: una aplicación de una función determinística de ingresos brutos frontera," Revista Lebret, Universidad Santo Tomás - Bucaramanga, vol. 5, pages 213-240, December.
    12. Khanal, Uttam & Wilson, Clevo & Shankar, Sriram & Hoang, Viet-Ngu & Lee, Boon, 2018. "Farm performance analysis: Technical efficiencies and technology gaps of Nepalese farmers in different agro-ecological regions," Land Use Policy, Elsevier, vol. 76(C), pages 645-653.
    13. Asfaw, Solomon & Cattaneo, Andrea & Pallante, Giacomo & Palma, Alessandro, 2017. "Improving the efficiency targeting of Malawi's farm input subsidy programme: Big pain, small gain?," Food Policy, Elsevier, vol. 73(C), pages 104-118.
    14. Boris Bravo-Ureta & William Greene & Daniel Solís, 2012. "Technical efficiency analysis correcting for biases from observed and unobserved variables: an application to a natural resource management project," Empirical Economics, Springer, vol. 43(1), pages 55-72, August.
    15. Álvaro Ramírez Suárez, 2013. "Análisis de eficiencia económica de fincas arroceras: una aplicación de una función determinística de ingresos brutos frontera," Revista Lebret, Universidad Santo Tomás - Bucaramanga, vol. 5, pages 213-240, December.
    16. repec:ags:bdbjaf:258303 is not listed on IDEAS
    17. Ali M. Oumer & Amin Mugera & Michael Burton & Atakelty Hailu, 2022. "Technical efficiency and firm heterogeneity in stochastic frontier models: application to smallholder maize farms in Ethiopia," Journal of Productivity Analysis, Springer, vol. 57(2), pages 213-241, April.
    18. Yakubu Abdul-Salam & Euan Phimister, 2017. "Efficiency Effects of Access to Information on Small-scale Agriculture: Empirical Evidence from Uganda using Stochastic Frontier and IRT Models," Journal of Agricultural Economics, Wiley Blackwell, vol. 68(2), pages 494-517, June.
    19. Daniel Solís & Boris E. Bravo‐Ureta & Ricardo E. Quiroga, 2009. "Technical Efficiency among Peasant Farmers Participating in Natural Resource Management Programmes in Central America," Journal of Agricultural Economics, Wiley Blackwell, vol. 60(1), pages 202-219, February.
    20. Subal Kumbhakar & Gudbrand Lien & J. Hardaker, 2014. "Technical efficiency in competing panel data models: a study of Norwegian grain farming," Journal of Productivity Analysis, Springer, vol. 41(2), pages 321-337, April.
    21. Uttam Khanal & Clevo Wilson & Boon Lee & Viet-Ngu Hoang, 2018. "Do climate change adaptation practices improve technical efficiency of smallholder farmers? Evidence from Nepal," Climatic Change, Springer, vol. 147(3), pages 507-521, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:9:p:1648-:d:112190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.