IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v112y2016icp303-312.html
   My bibliography  Save this article

An actor-network perspective on evaluating the R&D linking efficiency of innovation ecosystems

Author

Listed:
  • Chen, Ping-Chuan
  • Hung, Shiu-Wan

Abstract

Research and development (R&D) is one of the key factors contributing to the economic growths in both advanced and developing countries. Implementing technological innovation strategies to accelerate the research and development has thus become one of the most important industrial policies for governments. The R&D performance is highly influenced by the complexities of interactions among actors in an innovation system. An evaluation model that incorporates the influence of linking activities is highly desired. This study employed the actor-network theory to construct a three-stage R&D production framework that emphasizes the linking activities among basic research stage, technology translation stage, and system development stage. In addition, the network data envelopment analysis (DEA) method was used to evaluate the relative R&D efficiency across the global twenty-five countries. The analysis results screened out specialized efficient country at each sub-process and further constructed the efficiency group for benchmark-learning. This study also pointed to the importance of the research institution for technology commercialization. The potential application of network DEA and actor-network theory approach in assessing the efficiency of R&D activities were also highlighted.

Suggested Citation

  • Chen, Ping-Chuan & Hung, Shiu-Wan, 2016. "An actor-network perspective on evaluating the R&D linking efficiency of innovation ecosystems," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 303-312.
  • Handle: RePEc:eee:tefoso:v:112:y:2016:i:c:p:303-312
    DOI: 10.1016/j.techfore.2016.09.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162516303067
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2016.09.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin Falk, 2006. "What drives business Research and Development (R&D) intensity across Organisation for Economic Co-operation and Development (OECD) countries?," Applied Economics, Taylor & Francis Journals, vol. 38(5), pages 533-547.
    2. Kao, Chiang, 2009. "Efficiency decomposition in network data envelopment analysis: A relational model," European Journal of Operational Research, Elsevier, vol. 192(3), pages 949-962, February.
    3. Cristiano Antonelli & Pier Paolo Patrucco & Francesco Quatraro, 2011. "Productivity Growth and Pecuniary Knowledge Externalities: An Empirical Analysis of Agglomeration Economies in European Regions," Economic Geography, Taylor & Francis Journals, vol. 87(1), pages 23-50, January.
    4. Rolf Färe & Shawna Grosskopf & Gerald Whittaker, 2014. "Network DEA II," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 307-327, Springer.
    5. Golany, B & Roll, Y, 1989. "An application procedure for DEA," Omega, Elsevier, vol. 17(3), pages 237-250.
    6. Subal Kumbhakar & Raquel Ortega-Argilés & Lesley Potters & Marco Vivarelli & Peter Voigt, 2012. "Corporate R&D and firm efficiency: evidence from Europe’s top R&D investors," Journal of Productivity Analysis, Springer, vol. 37(2), pages 125-140, April.
    7. Nelson, Richard R. & Nelson, Katherine, 2002. "Technology, institutions, and innovation systems," Research Policy, Elsevier, vol. 31(2), pages 265-272, February.
    8. Seema Sharma & V. J. Thomas, 2008. "Inter-country R&D efficiency analysis: An application of data envelopment analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 76(3), pages 483-501, September.
    9. Guy Dumais & Glenn Ellison & Edward L. Glaeser, 2002. "Geographic Concentration As A Dynamic Process," The Review of Economics and Statistics, MIT Press, vol. 84(2), pages 193-204, May.
    10. Carol Corrado & Charles Hulten & Daniel Sichel, 2009. "Intangible Capital And U.S. Economic Growth," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 55(3), pages 661-685, September.
    11. Zvi Griliches, 1998. "Issues in Assessing the Contribution of Research and Development to Productivity Growth," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 17-45, National Bureau of Economic Research, Inc.
    12. Krammer, Sorin M.S., 2015. "Do good institutions enhance the effect of technological spillovers on productivity? Comparative evidence from developed and transition economies," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 133-154.
    13. Yves Levant & Simon Alcouffe & Nicolas Berland, 2008. "Actor-networks and the diffusion of management accounting innovations : a comparative study," Post-Print hal-01682216, HAL.
    14. Valentina Meliciani, 2000. "The relationship between R&D, investment and patents: a panel data analysis," Applied Economics, Taylor & Francis Journals, vol. 32(11), pages 1429-1437.
    15. Romer, Paul M, 1990. "Endogenous Technological Change," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 71-102, October.
    16. Ta-Wei Pan & Shiu-Wan Hung & Wen-Min Lu, 2010. "Dea Performance Measurement Of The National Innovation System In Asia And Europe," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 27(03), pages 369-392.
    17. Bengt-Åke Lundvall, 2007. "National Innovation Systems—Analytical Concept and Development Tool," Industry and Innovation, Taylor & Francis Journals, vol. 14(1), pages 95-119.
    18. Anil K. Gupta & Paul E. Tesluk & M. Susan Taylor, 2007. "Innovation At and Across Multiple Levels of Analysis," Organization Science, INFORMS, vol. 18(6), pages 885-897, December.
    19. Nasierowski, W. & Arcelus, F. J., 2003. "On the efficiency of national innovation systems," Socio-Economic Planning Sciences, Elsevier, vol. 37(3), pages 215-234, September.
    20. Hashimoto, Akihiro & Haneda, Shoko, 2008. "Measuring the change in R&D efficiency of the Japanese pharmaceutical industry," Research Policy, Elsevier, vol. 37(10), pages 1829-1836, December.
    21. Gehringer, Agnieszka, 2016. "Knowledge externalities and sectoral interdependences: Evidence from an open economy perspective," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 240-249.
    22. Jones, Charles I, 1995. "R&D-Based Models of Economic Growth," Journal of Political Economy, University of Chicago Press, vol. 103(4), pages 759-784, August.
    23. Cohen, Wesley M & Levinthal, Daniel A, 1989. "Innovation and Learning: The Two Faces of R&D," Economic Journal, Royal Economic Society, vol. 99(397), pages 569-596, September.
    24. Greenhalgh, Trisha & Stones, Rob, 2010. "Theorising big IT programmes in healthcare: Strong structuration theory meets actor-network theory," Social Science & Medicine, Elsevier, vol. 70(9), pages 1285-1294, May.
    25. Guan, Jiancheng & Chen, Kaihua, 2012. "Modeling the relative efficiency of national innovation systems," Research Policy, Elsevier, vol. 41(1), pages 102-115.
    26. Gonzalez, Eduardo & Gascon, Fernando, 2004. "Sources of productivity growth in the Spanish pharmaceutical industry (1994-2000)," Research Policy, Elsevier, vol. 33(5), pages 735-745, July.
    27. Thrane, Sof & Blaabjerg, Steen & Møller, Rasmus Hannemann, 2010. "Innovative path dependence: Making sense of product and service innovation in path dependent innovation processes," Research Policy, Elsevier, vol. 39(7), pages 932-944, September.
    28. Prieto, Angel M. & Zofio, Jose L., 2007. "Network DEA efficiency in input-output models: With an application to OECD countries," European Journal of Operational Research, Elsevier, vol. 178(1), pages 292-304, April.
    29. Nathan ROSENBERG, 2009. "Why do firms do basic research (with their own money)?," World Scientific Book Chapters, in: Nathan Rosenberg (ed.), Studies On Science And The Innovation Process Selected Works of Nathan Rosenberg, chapter 11, pages 225-234, World Scientific Publishing Co. Pte. Ltd..
    30. Tone, Kaoru & Tsutsui, Miki, 2009. "Network DEA: A slacks-based measure approach," European Journal of Operational Research, Elsevier, vol. 197(1), pages 243-252, August.
    31. Jan Fagerberg & Koson Sapprasert, 2011. "National innovation systems: the emergence of a new approach," Science and Public Policy, Oxford University Press, vol. 38(9), pages 669-679, November.
    32. Li, Xibao, 2009. "China's regional innovation capacity in transition: An empirical approach," Research Policy, Elsevier, vol. 38(2), pages 338-357, March.
    33. Markus Balzat & Horst Hanusch, 2004. "Recent trends in the research on national innovation systems," Journal of Evolutionary Economics, Springer, vol. 14(2), pages 197-210, June.
    34. repec:dau:papers:123456789/1094 is not listed on IDEAS
    35. Yang, Chyan & Liu, Hsian-Ming, 2012. "Managerial efficiency in Taiwan bank branches: A network DEA," Economic Modelling, Elsevier, vol. 29(2), pages 450-461.
    36. Chandan Sharma, 2012. "R&D and firm performance: evidence from the Indian pharmaceutical industry," Journal of the Asia Pacific Economy, Taylor & Francis Journals, vol. 17(2), pages 332-342.
    37. Zhang, Anming & Zhang, Yimin & Zhao, Ronald, 2003. "A study of the R&D efficiency and productivity of Chinese firms," Journal of Comparative Economics, Elsevier, vol. 31(3), pages 444-464, September.
    38. Richard Nelson, 1995. "Co-evolution of Industry Structure, Technology and Supporting Institutions, and the Making of Comparative Advantage," International Journal of the Economics of Business, Taylor & Francis Journals, vol. 2(2), pages 171-184.
    39. Peter Thompson, 2006. "Patent Citations and the Geography of Knowledge Spillovers: Evidence from Inventor- and Examiner-added Citations," The Review of Economics and Statistics, MIT Press, vol. 88(2), pages 383-388, May.
    40. Andrea Bonaccorsi & Cinzia Daraio, 2003. "A robust nonparametric approach to the analysis of scientific productivity," Research Evaluation, Oxford University Press, vol. 12(1), pages 47-69, April.
    41. Kaihua Chen & Jiancheng Guan, 2012. "Measuring the Efficiency of China's Regional Innovation Systems: Application of Network Data Envelopment Analysis (DEA)," Regional Studies, Taylor & Francis Journals, vol. 46(3), pages 355-377, April.
    42. García-Valderrama, Teresa & Mulero-Mendigorri, Eva & Revuelta-Bordoy, Daniel, 2009. "Relating the perspectives of the balanced scorecard for R&D by means of DEA," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1177-1189, August.
    43. Lee, Hakyeon & Park, Yongtae & Choi, Hoogon, 2009. "Comparative evaluation of performance of national R&D programs with heterogeneous objectives: A DEA approach," European Journal of Operational Research, Elsevier, vol. 196(3), pages 847-855, August.
    44. Jon Zabala-Iturriagagoitia & Peter Voigt & Antonio Gutierrez-Gracia & Fernando Jimenez-Saez, 2007. "Regional Innovation Systems: How to Assess Performance," Regional Studies, Taylor & Francis Journals, vol. 41(5), pages 661-672.
    45. Daniel A. Levinthal & Jennifer Myatt, 1994. "Evolution of Capabilities and Industry: The Evolution of Mutual Fund Processing," Center for Financial Institutions Working Papers 94-30, Wharton School Center for Financial Institutions, University of Pennsylvania.
    46. Steen, John, 2010. "Actor-network theory and the dilemma of the resource concept in strategic management," Scandinavian Journal of Management, Elsevier, vol. 26(3), pages 324-331, September.
    47. Daniel Levinthal & Jennifer Myatt, 1994. "Co‐Evolution of Capabilities and Industry: The Evolution of Mutual Fund Processing," Strategic Management Journal, Wiley Blackwell, vol. 15(S1), pages 45-62, December.
    48. Liu, Xielin & White, Steven, 2001. "Comparing innovation systems: a framework and application to China's transitional context," Research Policy, Elsevier, vol. 30(7), pages 1091-1114, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Falcone, Pasquale Marcello & Lopolito, Antonio & Sica, Edgardo, 2019. "Instrument mix for energy transition: A method for policy formulation," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    2. Kertcher, Zack & Venkatraman, Rohan & Coslor, Erica, 2020. "Pleasingly parallel: Early cross-disciplinary work for innovation diffusion across boundaries in grid computing," Journal of Business Research, Elsevier, vol. 116(C), pages 581-594.
    3. Svetlana V. Ratner & Svetlana A. Balashova & Andrey V. Lychev, 2022. "The Efficiency of National Innovation Systems in Post-Soviet Countries: DEA-Based Approach," Mathematics, MDPI, vol. 10(19), pages 1-23, October.
    4. Carla Mascarenhas & Carla Marques & João J. Ferreira, 2020. "One for All and All for One: Collaboration and Cooperation in Triple Helix Knowledge Cocreation," International Regional Science Review, , vol. 43(4), pages 316-343, July.
    5. Yongqi Feng & Haolin Zhang & Yung-ho Chiu & Tzu-Han Chang, 2021. "Innovation efficiency and the impact of the institutional quality: a cross-country analysis using the two-stage meta-frontier dynamic network DEA model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3091-3129, April.
    6. Pigford, Ashlee-Ann E. & Hickey, Gordon M. & Klerkx, Laurens, 2018. "Beyond agricultural innovation systems? Exploring an agricultural innovation ecosystems approach for niche design and development in sustainability transitions," Agricultural Systems, Elsevier, vol. 164(C), pages 116-121.
    7. Jun Liu & Yikun Zhang & Xiaoyu Ma & Huilin Wang, 2023. "Do Innovative Provincial Policies Promote the Optimization of Regional Innovation Ecosystems?," Sustainability, MDPI, vol. 15(16), pages 1-24, August.
    8. Xie, Xuemei & Liu, Xiaojie & Blanco, Cristina, 2023. "Evaluating and forecasting the niche fitness of regional innovation ecosystems: A comparative evaluation of different optimized grey models," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    9. Jing Huang & Hongqi Wang & Jianlong Wu & Zhongji Yang & Xiaobo Hu & Mengmeng Bao, 2020. "Exploring the Key Driving Forces of the Sustainable Intergenerational Evolution of the Industrial Alliance Innovation Ecosystem: Evidence from a Case Study of China’s TDIA," Sustainability, MDPI, vol. 12(4), pages 1-31, February.
    10. Shi‐Xiao Wang & Wen‐Min Lu & Shiu‐Wan Hung, 2020. "Improving innovation efficiency of emerging economies: The role of manufacturing," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 41(4), pages 503-519, June.
    11. Xuhong Zhang & Haiqing Hu & Cheng Zhou, 2023. "Spatiotemporal Evolution and Cause Analysis of Innovation Ecosystem Niche Fitness: A Case Study of the Yellow River Basin," Sustainability, MDPI, vol. 15(12), pages 1-16, June.
    12. Marcon, Arthur & Ribeiro, José Luis Duarte & Olteanu, Yasmin & Fichter, Klaus, 2024. "How the interplay between innovation ecosystems and market contingency factors impacts startup innovation," Technology in Society, Elsevier, vol. 76(C).
    13. Söderholm, Patrik & Hellsmark, Hans & Frishammar, Johan & Hansson, Julia & Mossberg, Johanna & Sandström, Annica, 2019. "Technological development for sustainability: The role of network management in the innovation policy mix," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 309-323.
    14. Xiong, Xi & Yang, Guo-liang & Guan, Zhong-cheng, 2020. "A parallel DEA-based method for evaluating parallel independent subunits with heterogeneous outputs," Journal of Informetrics, Elsevier, vol. 14(3).
    15. Prokop, Viktor & Hajek, Petr & Stejskal, Jan, 2021. "Configuration Paths to Efficient National Innovation Ecosystems," Technological Forecasting and Social Change, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibrahim Alnafrah, 2021. "Efficiency evaluation of BRICS’s national innovation systems based on bias-corrected network data envelopment analysis," Journal of Innovation and Entrepreneurship, Springer, vol. 10(1), pages 1-28, December.
    2. Guan, Jiancheng & Chen, Kaihua, 2012. "Modeling the relative efficiency of national innovation systems," Research Policy, Elsevier, vol. 41(1), pages 102-115.
    3. Chia-Chin Chang, 2015. "Influences of knowledge spillover and utilization on the NIS performance: a multi-stage efficiency perspective," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(5), pages 1945-1967, September.
    4. Khoshnevis, Pegah & Teirlinck, Peter, 2018. "Performance evaluation of R&D active firms," Socio-Economic Planning Sciences, Elsevier, vol. 61(C), pages 16-28.
    5. Vitor Miguel Ribeiro & Celeste Varum & Ana Dias Daniel, 2021. "Introducing microeconomic foundation in data envelopment analysis: effects of the ex ante regulation principle on regional performance," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 12(3), pages 1215-1244, September.
    6. Lee, Jun Gon & Park, Min Jae, 2020. "Evaluation of technological competence and operations efficiency in the defense industry: The strategic planning of South Korea," Evaluation and Program Planning, Elsevier, vol. 79(C).
    7. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    8. Sungmin Park, 2015. "The R&D logic model: Does it really work? An empirical verification using successive binary logistic regression models," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1399-1439, December.
    9. Kancs, d’Artis & Siliverstovs, Boriss, 2016. "R&D and non-linear productivity growth," Research Policy, Elsevier, vol. 45(3), pages 634-646.
    10. Huang, Tai-Hsin & Lin, Chung-I & Chen, Kuan-Chen, 2017. "Evaluating efficiencies of Chinese commercial banks in the context of stochastic multistage technologies," Pacific-Basin Finance Journal, Elsevier, vol. 41(C), pages 93-110.
    11. Proksch, Dorian & Haberstroh, Marcus Max & Pinkwart, Andreas, 2017. "Increasing the national innovative capacity: Identifying the pathways to success using a comparative method," Technological Forecasting and Social Change, Elsevier, vol. 116(C), pages 256-270.
    12. Huang, Tai-Hsin & Chen, Kuan-Chen & Lin, Chung-I, 2018. "An extension from network DEA to copula-based network SFA: Evidence from the U.S. commercial banks in 2009," The Quarterly Review of Economics and Finance, Elsevier, vol. 67(C), pages 51-62.
    13. Jian-Wen Fang & Yung-ho Chiu, 2017. "Research on Innovation Efficiency and Technology Gap in China Economic Development," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(02), pages 1-22, April.
    14. Carayannis, Elias G. & Grigoroudis, Evangelos & Wurth, Bernd, 2022. "OR for entrepreneurial ecosystems: A problem-oriented review and agenda," European Journal of Operational Research, Elsevier, vol. 300(3), pages 791-808.
    15. Rakas, Marija & Hain, Daniel S., 2019. "The state of innovation system research: What happens beneath the surface?," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    16. Chen, Xiafei & Liu, Zhiying & Zhu, Qingyuan, 2020. "Reprint of "Performance evaluation of China's high-tech innovation process :Analysis based on the innovation value chain"," Technovation, Elsevier, vol. 94.
    17. Shi‐Xiao Wang & Wen‐Min Lu & Shiu‐Wan Hung, 2020. "Improving innovation efficiency of emerging economies: The role of manufacturing," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 41(4), pages 503-519, June.
    18. Chen, Xiafei & Liu, Zhiying & Zhu, Qingyuan, 2018. "Performance evaluation of China's high-tech innovation process: Analysis based on the innovation value chain," Technovation, Elsevier, vol. 74, pages 42-53.
    19. Chen, Kaihua & Kou, Mingting & Fu, Xiaolan, 2018. "Evaluation of multi-period regional R&D efficiency: An application of dynamic DEA to China's regional R&D systems," Omega, Elsevier, vol. 74(C), pages 103-114.
    20. Chen Kaihua & Kou Mingting, 2014. "Staged efficiency and its determinants of regional innovation systems: a two-step analytical procedure," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 52(2), pages 627-657, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:112:y:2016:i:c:p:303-312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.