IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login

Citations for "A Monte Carlo Study of the Forecasting Performance of Empirical SETAR Models"

by Clements, Michael P & Smith, Jeremy

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as in new window

  1. Timo Teräsvirta & Dick van Dijk & Marcelo Cunha Medeiros, 2004. "Linear models, smooth transition autoregressions and neural networks for forecasting macroeconomic time series: A reexamination," Textos para discussão 485, Department of Economics PUC-Rio (Brazil).
  2. Prasad S. Bhattacharya & Dimitrios D. Thomakos, 2006. "Forecasting Industry-Level CPI and PPI Inflation: Does Exchange Rate Pass-Through Matter?," Economics Series 2006_10, Deakin University, Faculty of Business and Law, School of Accounting, Economics and Finance.
  3. Oscar Claveria & Enric Monte & Salvador Torra, 2015. "“Self-organizing map analysis of agents’ expectations. Different patterns of anticipation of the 2008 financial crisis”," AQR Working Papers 201508, University of Barcelona, Regional Quantitative Analysis Group, revised Mar 2015.
  4. Rapach, David E. & Wohar, Mark E., 2006. "The out-of-sample forecasting performance of nonlinear models of real exchange rate behavior," International Journal of Forecasting, Elsevier, vol. 22(2), pages 341-361.
  5. Michael J. Dueker & Martin Sola & Fabio Spagnolo, 2006. "Contemporaneous threshold autoregressive models: estimation, testing and forecasting," Working Papers 2003-024, Federal Reserve Bank of St. Louis.
  6. Huber Florian, 2016. "Forecasting exchange rates using multivariate threshold models," The B.E. Journal of Macroeconomics, De Gruyter, vol. 16(1), pages 193-210, January.
  7. Paulo Rodrigues & Nazarii Salish, 2015. "Modeling and forecasting interval time series with threshold models," Advances in Data Analysis and Classification, German Classification Society - Gesellschaft für Klassifikation (GfKl);http://www.bunrui.jp/en/;Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(1), pages 41-57, March.
  8. Kuo, Biing-Shen & Mikkola, Anne, 2000. "Forecasting the Real US/DEM Exchange Rate: TAR vs. AR," Research Discussion Papers 13/2000, Bank of Finland.
  9. Nektarios Aslanidis, 2002. "Smooth Transition Regression Models in UK Stock Returns," Working Papers 0201, University of Crete, Department of Economics.
  10. Claveria, Oscar & Pons, Ernest & Ramos, Raul, 2007. "Business and consumer expectations and macroeconomic forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 47-69.
  11. G. Boero & E. Marrocu, 2002. "The performance of Setar Models: a regime conditional evaluation of point, interval and density forecasts," Working Paper CRENoS 200208, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
  12. van Dijk, D.J.C. & Franses, Ph.H.B.F., 2003. "Selecting a Nonlinear Time Series Model using Weighted Tests of Equal Forecast Accuracy," Econometric Institute Research Papers EI 2003-10, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  13. Clements, Michael P. & Galvao, Ana Beatriz, 2004. "A comparison of tests of nonlinear cointegration with application to the predictability of US interest rates using the term structure," International Journal of Forecasting, Elsevier, vol. 20(2), pages 219-236.
  14. Anja Rossen, 2016. "On the Predictive Content of Nonlinear Transformations of Lagged Autoregression Residuals and Time Series Observations," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), Justus-Liebig University Giessen, Department of Statistics and Economics, vol. 236(3), pages 389-409, April.
  15. G. Boero & E. Marrocu, 2000. "La performance di modelli non lineari per i tassi di cambio: un'applicazione con dati a diversa frequenza," Working Paper CRENoS 200014, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
  16. Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen M. Miller, 2012. "Was the Recent Downturn in US GDP Predictable?," Working papers 2012-38, University of Connecticut, Department of Economics, revised Dec 2013.
  17. Gabreyohannes, Emmanuel, 2010. "A nonlinear approach to modelling the residential electricity consumption in Ethiopia," Energy Economics, Elsevier, vol. 32(3), pages 515-523, May.
  18. Paulo M.M. Rodrigues & Nazarii Salish, 2011. "Modeling and Forecasting Interval Time Series with Threshold Models: An Application to S&P500 Index Returns," Working Papers w201128, Banco de Portugal, Economics and Research Department.
  19. Terui, Nobuhiko & van Dijk, Herman K., 2002. "Combined forecasts from linear and nonlinear time series models," International Journal of Forecasting, Elsevier, vol. 18(3), pages 421-438.
  20. Gianna Boero & Emanuela Marrocu, 2005. "Evaluating non-linear models on point and interval forecasts: an application with exchange rates," Banca Nazionale del Lavoro Quarterly Review, Banca Nazionale del Lavoro, vol. 58(232), pages 91-120.
  21. Yuan, Chunming, 2011. "The exchange rate and macroeconomic determinants: Time-varying transitional dynamics," The North American Journal of Economics and Finance, Elsevier, vol. 22(2), pages 197-220, August.
  22. Clements, M.P. & Franses, Ph.H.B.F. & Smith, J., 1999. "On SETAR non- linearity and forecasting," Econometric Institute Research Papers EI 9914-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  23. Li, Jing, 2011. "Bootstrap prediction intervals for SETAR models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 320-332, April.
  24. Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen M. Miller, 2015. "Was the recent downturn in US real GDP predictable?," Applied Economics, Taylor & Francis Journals, vol. 47(28), pages 2985-3007, June.
  25. Jennifer Castle & David Hendry, 2013. "Semi-automatic Non-linear Model selection," Economics Series Working Papers 654, University of Oxford, Department of Economics.
  26. Kostas Mouratidis & Nicola Spagnolo, 2004. "Evaluating currency crises: the case of the European Monetary System," Money Macro and Finance (MMF) Research Group Conference 2003 69, Money Macro and Finance Research Group.
  27. Fredj Jawadi, 2009. "Essay in dividend modelling and forecasting: does nonlinearity help?," Applied Financial Economics, Taylor & Francis Journals, vol. 19(16), pages 1329-1343.
  28. David G. McMillan, 2009. "Non-linear interest rate dynamics and forecasting: evidence for US and Australian interest rates," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 14(2), pages 139-155.
  29. repec:hal:journl:halshs-00185373 is not listed on IDEAS
  30. Francisco Ledesma-Rodriguez & Manuel Navarro-Ibanez & Jorge Perez-Rodriguez & Simon Sosvilla-Rivero, 2005. "Assessing the credibility of a target zone: evidence from the EMS," Applied Economics, Taylor & Francis Journals, vol. 37(19), pages 2265-2287.
  31. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
  32. Kapetanios, G., 1999. "Threshold Models for Trended Time Series," Cambridge Working Papers in Economics 9905, Faculty of Economics, University of Cambridge.
  33. Denise R. Osborn & Paul W. Simpson, 2000. "Forecasting UK Industrial Production Over the Business Cycle," Econometric Society World Congress 2000 Contributed Papers 1059, Econometric Society.
  34. Nadir Ocal & Denise R. Osborn, 2000. "Business cycle non-linearities in UK consumption and production," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(1), pages 27-43.
  35. Lanne, Markku & Luoto, Jani & Saikkonen, Pentti, 2010. "Optimal Forecasting of Noncausal Autoregressive Time Series," MPRA Paper 23648, University Library of Munich, Germany.
  36. Adrian Cantemir Calin & Tiberiu Diaconescu & Oana – Cristina Popovici, 2014. "Nonlinear Models for Economic Forecasting Applications: An Evolutionary Discussion," Computational Methods in Social Sciences (CMSS), "Nicolae Titulescu" University of Bucharest, Faculty of Economic Sciences, vol. 2(1), pages 42-47, June.
  37. Oscar Claveria & Salvador Torra, 2013. "“Forecasting Business surveys indicators: neural networks vs. time series models”," AQR Working Papers 201312, University of Barcelona, Regional Quantitative Analysis Group, revised Nov 2013.
  38. Shiyi Chen & Kiho Jeong & Wolfgang Härdle, 2008. "Support Vector Regression Based GARCH Model with Application to Forecasting Volatility of Financial Returns," SFB 649 Discussion Papers SFB649DP2008-014, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  39. Clements, Michael P. & Smith, Jeremy, 1997. "The performance of alternative forecasting methods for SETAR models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 463-475, December.
  40. Massimo Guidolin & Stuart Hyde & David McMillan & Sadayuki Ono, 2009. "Non-linear predictability in stock and bond returns: when and where is it exploitable?," Working Papers 2008-010, Federal Reserve Bank of St. Louis.
  41. repec:hal:journl:halshs-00185372 is not listed on IDEAS
  42. Guney, Selin, 2014. "An Analysis of the Pass-Through of Exchange Rates in Tropical Forest Product Markets: A Smooth Transition Approach," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205107, Agricultural and Applied Economics Association;Western Agricultural Economics Association.
  43. Jack R. Rogers, 2013. "Monetary Transmission to UK Retail Mortgage Rates before and after August 2007," Discussion Papers 1307, Exeter University, Department of Economics.
  44. Shiyi Chen & Wolfgang K. Härdle & Kiho Jeong, 2010. "Forecasting volatility with support vector machine-based GARCH model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(4), pages 406-433.
  45. repec:ntu:ntugeo:vol2-iss1-14-042 is not listed on IDEAS
  46. McMillan, David G., 2007. "Non-linear forecasting of stock returns: Does volume help?," International Journal of Forecasting, Elsevier, vol. 23(1), pages 115-126.
  47. Perez-Rodriguez, Jorge V. & Torra, Salvador & Andrada-Felix, Julian, 2005. "STAR and ANN models: forecasting performance on the Spanish "Ibex-35" stock index," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 490-509, June.
  48. Mouratidis, Kostas, 2008. "Evaluating currency crises: A Bayesian Markov switching approach," Journal of Macroeconomics, Elsevier, vol. 30(4), pages 1688-1711, December.
  49. Franses, Ph.H.B.F. & van Dijk, D.J.C., 2001. "The forecasting performance of various models for seasonality and nonlinearity for quarterly industrial production," Econometric Institute Research Papers EI 2001-14, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  50. Clements, Michael P. & Smith, Jeremy, 2001. "Evaluating forecasts from SETAR models of exchange rates," Journal of International Money and Finance, Elsevier, vol. 20(1), pages 133-148, February.
  51. Chunming Yuan, 2008. "Forecasting Exchange Rates: The Multi-State Markov-Switching Model with Smoothing," UMBC Economics Department Working Papers 09-115, UMBC Department of Economics, revised 01 Nov 2009.
  52. Hui Feng & Jia Liu, 2002. "A SETAR Model for Canadian GDP: Non-Linearities and Forecast Comparisons," Econometrics Working Papers 0206, Department of Economics, University of Victoria.
  53. G. Boero & E. Marrocu, 2001. "Evaluating non-linear models on point and interval forecasts: an application with exchange rate returns," Working Paper CRENoS 200110, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
  54. David Hendry, 2000. "A General Forecast-error Taxonomy," Econometric Society World Congress 2000 Contributed Papers 0608, Econometric Society.
  55. Laurent Ferrara & Dominique Guegan, 2006. "Real-time detection of the business cycle using SETAR models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00185372, HAL.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.