IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v20y2004i2p305-320.html
   My bibliography  Save this article

The performance of SETAR models: a regime conditional evaluation of point, interval and density forecasts

Author

Listed:
  • Boero, Gianna
  • Marrocu, Emanuela

Abstract

The aim of this paper is to analyse the out-of-sample performance of SETAR models relative to a linear AR and a GARCH model using daily data for the Euro effective exchange rate. The evaluation is conducted on point, interval and density forecasts, unconditionally, over the whole forecast period, and conditional on specific regimes. The results show that overall the GARCH model is better able to capture the distributional features of the series and to predict higher-order moments than the SETAR models. However, from the results there is also a clear indication that the performance of the SETAR models improves significantly conditional on being on specific regimes.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Boero, Gianna & Marrocu, Emanuela, 2004. "The performance of SETAR models: a regime conditional evaluation of point, interval and density forecasts," International Journal of Forecasting, Elsevier, vol. 20(2), pages 305-320.
  • Handle: RePEc:eee:intfor:v:20:y:2004:i:2:p:305-320
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(03)00109-2
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Clements, Michael P. & Smith, Jeremy, 1997. "The performance of alternative forecasting methods for SETAR models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 463-475, December.
    2. Boero, Gianna & Smith, Jeremy & Wallis, Kenneth F, 2002. "The Properties Of Some Goodness-Of-Fit Tests," The Warwick Economics Research Paper Series (TWERPS) 653, University of Warwick, Department of Economics.
    3. Clements, M.P. & Smith J., 1998. "Evaluating The Forecast of Densities of Linear and Non-Linear Models: Applications to Output Growth and Unemployment," The Warwick Economics Research Paper Series (TWERPS) 509, University of Warwick, Department of Economics.
    4. Granger, Clive W J, 1993. "Strategies for Modelling Nonlinear Time-Series Relationships," The Economic Record, The Economic Society of Australia, vol. 69(206), pages 233-238, September.
    5. Diebold, Francis X. & Nason, James A., 1990. "Nonparametric exchange rate prediction?," Journal of International Economics, Elsevier, vol. 28(3-4), pages 315-332, May.
    6. Krager, Horst & Kugler, Peter, 1993. "Non-linearities in foreign exchange markets: a different perspective," Journal of International Money and Finance, Elsevier, vol. 12(2), pages 195-208, April.
    7. Wallis, Kenneth F., 2003. "Chi-squared tests of interval and density forecasts, and the Bank of England's fan charts," International Journal of Forecasting, Elsevier, vol. 19(2), pages 165-175.
    8. Anthony Tay & Kenneth F. Wallis, 2000. "Density Forecasting: A Survey," Econometric Society World Congress 2000 Contributed Papers 0370, Econometric Society.
    9. Boero, Gianna & Smith, Jeremy & Wallis, Kenneth F, 2002. "The Properties Of Some Goodness-Of-Fit Tests," The Warwick Economics Research Paper Series (TWERPS) 653, University of Warwick, Department of Economics.
    10. Boero, Gianna & Marrocu, Emanuela, 2002. "The Performance of Non-linear Exchange Rate Models: A Forecasting Comparison," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(7), pages 513-542, November.
    11. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    12. Brooks, Chris, 2001. "A Double-Threshold GARCH Model for the French Franc/Deutschmark Exchange Rate," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(2), pages 135-143, March.
    13. Clements, Michael P. & Smith, Jeremy, 2001. "Evaluating forecasts from SETAR models of exchange rates," Journal of International Money and Finance, Elsevier, vol. 20(1), pages 133-148, February.
    14. Clements, Michael P & Smith, Jeremy, 1999. "A Monte Carlo Study of the Forecasting Performance of Empirical SETAR Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(2), pages 123-141, March-Apr.
    15. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    16. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    17. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    18. G. Boero & E. Marrocu, 2001. "Evaluating non-linear models on point and interval forecasts: an application with exchange rate returns," Working Paper CRENoS 200110, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    19. Anderson, Gordon, 1994. "Simple tests of distributional form," Journal of Econometrics, Elsevier, vol. 62(2), pages 265-276, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:lan:wpaper:2450 is not listed on IDEAS
    2. repec:ntu:ntugeo:vol2-iss1-14-042 is not listed on IDEAS
    3. Jian Wang & Jason J. Wu, 2012. "The Taylor Rule and Forecast Intervals for Exchange Rates," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(1), pages 103-144, February.
    4. Wagner Piazza Gaglianone & Jaqueline Terra Moura Marins, 2014. "Risk Assessment of the Brazilian FX Rate," Working Papers Series 344, Central Bank of Brazil, Research Department.
    5. Fredj Jawadi, 2009. "Essay in dividend modelling and forecasting: does nonlinearity help?," Applied Financial Economics, Taylor & Francis Journals, vol. 19(16), pages 1329-1343.
    6. repec:lan:wpaper:2592 is not listed on IDEAS
    7. repec:lan:wpaper:2369 is not listed on IDEAS
    8. Arruda, Elano Ferreira & Ferreira, Roberto Tatiwa & Castelar, Ivan, 2011. "Modelos lineares e não lineares da curva de Phillips para previsão da taxa de Inflação no Brasil," Revista Brasileira de Economia - RBE, FGV/EPGE - Escola Brasileira de Economia e Finanças, Getulio Vargas Foundation (Brazil), vol. 65(3), September.
    9. Gianna Boero & Emanuela Marrocu, 2005. "Evaluating non-linear models on point and interval forecasts: an application with exchange rates," BNL Quarterly Review, Banca Nazionale del Lavoro, vol. 58(232), pages 91-120.
    10. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    11. E Pavlidis & I Paya & D Peel, 2009. "Forecasting the Real Exchange Rate using a Long Span of Data. A Rematch: Linear vs Nonlinear," Working Papers 601190, Lancaster University Management School, Economics Department.
    12. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
    13. Gloria González-Rivera & Tae-Hwy Lee, 2007. "Nonlinear Time Series in Financial Forecasting," Working Papers 200803, University of California at Riverside, Department of Economics, revised Feb 2008.
    14. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    15. Heather M. Anderson & Chin Nam Low, 2004. "Random Walk Smooth Transition Autoregressive Models," Monash Econometrics and Business Statistics Working Papers 22/04, Monash University, Department of Econometrics and Business Statistics, revised May 2005.
    16. repec:eee:intfor:v:33:y:2017:i:3:p:707-728 is not listed on IDEAS
    17. Adrian Cantemir Calin & Tiberiu Diaconescu & Oana – Cristina Popovici, 2014. "Nonlinear Models for Economic Forecasting Applications: An Evolutionary Discussion," Computational Methods in Social Sciences (CMSS), "Nicolae Titulescu" University of Bucharest, Faculty of Economic Sciences, vol. 2(1), pages 42-47, June.
    18. G. Marletto, 2006. "La politica dei trasporti come politica per l'innovazione: spunti da un approccio evolutivo," Working Paper CRENoS 200605, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    19. Gaglianone, Wagner Piazza & Marins, Jaqueline Terra Moura, 2017. "Evaluation of exchange rate point and density forecasts: An application to Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 707-728.
    20. John W. Galbraith & Greg Tkacz, 2007. "How Far Can Forecasting Models Forecast? Forecast Content Horizons for Some Important Macroeconomic Variables," Staff Working Papers 07-1, Bank of Canada.
    21. OA Carboni & G. Medda, 2007. "Government Size and the Composition of Public Spending in a Neoclassical Growth Model," Working Paper CRENoS 200701, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:20:y:2004:i:2:p:305-320. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.