IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v32y2010i3p515-523.html
   My bibliography  Save this article

A nonlinear approach to modelling the residential electricity consumption in Ethiopia

Author

Listed:
  • Gabreyohannes, Emmanuel

Abstract

In this paper an attempt is made to model, analyze and forecast the residential electricity consumption in Ethiopia using the self-exciting threshold autoregressive (SETAR) model and the smooth transition regression (STR) model. For comparison purposes, the application was also extended to standard linear models. During the empirical presentation of both models, significant nonlinear effects were found and linearity was rejected. The SETAR model was found out to be relatively better than the linear autoregressive model in out-of-sample point and interval (density) forecasts. Results from our STR model showed that the residual variance of the fitted STR model was only about 65.7% of that of the linear ARX model. Thus, we can conclude that the inclusion of the nonlinear part, which basically accounts for the arrival of extreme price events, leads to improvements in the explanatory abilities of the model for electricity consumption in Ethiopia.

Suggested Citation

  • Gabreyohannes, Emmanuel, 2010. "A nonlinear approach to modelling the residential electricity consumption in Ethiopia," Energy Economics, Elsevier, vol. 32(3), pages 515-523, May.
  • Handle: RePEc:eee:eneeco:v:32:y:2010:i:3:p:515-523
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140-9883(09)00141-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002. "Smooth Transition Autoregressive Models — A Survey Of Recent Developments," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.
    2. Misiorek Adam & Trueck Stefan & Weron Rafal, 2006. "Point and Interval Forecasting of Spot Electricity Prices: Linear vs. Non-Linear Time Series Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-36, September.
    3. Clements, Michael P & Smith, Jeremy, 1999. "A Monte Carlo Study of the Forecasting Performance of Empirical SETAR Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(2), pages 123-141, March-Apr.
    4. Boswijk, H.P. & van Dijk, D. & Franses, P.H., 2000. "Asymmetric and Common Abssorbtion of Shocks in Nonlinear Autoregressive Models," CeNDEF Working Papers 00-10, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    5. Adam Misiorek & Rafal Weron, 2006. "Interval forecasting of spot electricity prices," HSC Research Reports HSC/06/05, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    6. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    7. Moral-Carcedo, Julian & Vicens-Otero, Jose, 2005. "Modelling the non-linear response of Spanish electricity demand to temperature variations," Energy Economics, Elsevier, vol. 27(3), pages 477-494, May.
    8. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    9. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    10. Stephen Leybourne & Paul Newbold & Dimitrios Vougas, 1998. "Unit roots and smooth transitions," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(1), pages 83-97, January.
    11. Pesaran, M. Hashem & Potter, Simon M., 1997. "A floor and ceiling model of US output," Journal of Economic Dynamics and Control, Elsevier, vol. 21(4-5), pages 661-695, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sudeshna Ghosh, 2019. "Environmental Pollution, Income Inequality, and Household Energy Consumption: Evidence from the United Kingdom," Journal of International Commerce, Economics and Policy (JICEP), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 1-31, June.
    2. Galadima, Mukhtar Danladi & Aminu, Abubakar Wambai, 2020. "Nonlinear unit root and nonlinear causality in natural gas - economic growth nexus: Evidence from Nigeria," Energy, Elsevier, vol. 190(C).
    3. Kassahun, Habtamu Tilahun & Swait, Joffre & Jacobsen, Jette Bredahl, 2021. "Distortions in willingness-to-pay for public goods induced by endemic distrust in institutions," Journal of choice modelling, Elsevier, vol. 39(C).
    4. Hasanov, Mübariz, 2015. "The demand for transport fuels in Turkey," Energy Economics, Elsevier, vol. 51(C), pages 125-134.
    5. Xiaoli He & Hongwu Wang & Haoran Pan, 2014. "Energy Consumption, Economic Development and Temperature in China: Evidence from PSTR Model," Frontiers of Economics in China-Selected Publications from Chinese Universities, Higher Education Press, vol. 9(4), pages 695-712, December.
    6. Omay, Tolga & Hasanov, Mübariz & Uçar, Nuri, 2014. "Energy consumption and economic growth: Evidence from nonlinear panel cointegration and causality tests," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 34(2), pages 36-55.
    7. Nawaz, Saima & Iqbal, Nasir & Anwar, Saba, 2014. "Modelling electricity demand using the STAR (Smooth Transition Auto-Regressive) model in Pakistan," Energy, Elsevier, vol. 78(C), pages 535-542.
    8. Kamyabi, Najmeh & Chidmi, Benaissa, 2022. "Gasoline demand in the United States: An asymmetric economic analysis," The Journal of Economic Asymmetries, Elsevier, vol. 26(C).
    9. Mondal, Md Alam Hossain & Bryan, Elizabeth & Ringler, Claudia & Mekonnen, Dawit & Rosegrant, Mark, 2018. "Ethiopian energy status and demand scenarios: Prospects to improve energy efficiency and mitigate GHG emissions," Energy, Elsevier, vol. 149(C), pages 161-172.
    10. Lee, Chien-Chiang & Chiu, Yi-Bin, 2013. "Modeling OECD energy demand: An international panel smooth transition error-correction model," International Review of Economics & Finance, Elsevier, vol. 25(C), pages 372-383.
    11. McLoughlin, Fintan & Duffy, Aidan & Conlon, Michael, 2013. "Evaluation of time series techniques to characterise domestic electricity demand," Energy, Elsevier, vol. 50(C), pages 120-130.
    12. Lee, Chien-Chiang & Chiu, Yi-Bin, 2011. "Electricity demand elasticities and temperature: Evidence from panel smooth transition regression with instrumental variable approach," Energy Economics, Elsevier, vol. 33(5), pages 896-902, September.
    13. Xie, Wanli & Wu, Wen-Ze & Liu, Chong & Zhao, Jingjie, 2020. "Forecasting annual electricity consumption in China by employing a conformable fractional grey model in opposite direction," Energy, Elsevier, vol. 202(C).
    14. Trotter, Philipp A. & McManus, Marcelle C. & Maconachie, Roy, 2017. "Electricity planning and implementation in sub-Saharan Africa: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1189-1209.
    15. Hassen, Sied & Beyene, Abebe D. & Jeuland, Marc & Mekonnen, Alemu & Meles, Tensay Hadush & Sebsibie, Samuel & Klug, Thomas & Pattanayak, Subhrendu K. & Toman, Michael A., 2022. "Effect of electricity price reform on households’ electricity consumption in urban Ethiopia," Utilities Policy, Elsevier, vol. 79(C).
    16. Hasanov, Mübariz & Telatar, Erdinc, 2011. "A re-examination of stationarity of energy consumption: Evidence from new unit root tests," Energy Policy, Elsevier, vol. 39(12), pages 7726-7738.
    17. Adewuyi, Adeolu O. & Ogebe, Joseph O., 2019. "The validity of uncovered interest parity: Evidence from african members and non-member of the organisation of petroleum exporting countries (OPEC)," Economic Modelling, Elsevier, vol. 82(C), pages 229-249.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clements, Michael P. & Smith, Jeremy, 2001. "Evaluating forecasts from SETAR models of exchange rates," Journal of International Money and Finance, Elsevier, vol. 20(1), pages 133-148, February.
    2. Singh, Tarlok, 2014. "On the regime-switching and asymmetric dynamics of economic growth in the OECD countries," Research in Economics, Elsevier, vol. 68(2), pages 169-192.
    3. George Kapetanios & Yongcheol Shin, 2006. "Unit root tests in three-regime SETAR models," Econometrics Journal, Royal Economic Society, vol. 9(2), pages 252-278, July.
    4. Simon Potter, 1999. "Nonlinear Time Series Modelling: An Introduction," Journal of Economic Surveys, Wiley Blackwell, vol. 13(5), pages 505-528, December.
    5. Taylor, Mark P & Peel, David A & Sarno, Lucio, 2001. "Nonlinear Mean-Reversion in Real Exchange Rates: Toward a Solution to the Purchasing Power Parity Puzzles," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(4), pages 1015-1042, November.
    6. Dick van Dijk & Philip Hans Franses & Michael P. Clements & Jeremy Smith, 2003. "On SETAR non-linearity and forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(5), pages 359-375.
    7. Dueker, Michael J. & Sola, Martin & Spagnolo, Fabio, 2007. "Contemporaneous threshold autoregressive models: Estimation, testing and forecasting," Journal of Econometrics, Elsevier, vol. 141(2), pages 517-547, December.
    8. George Kapetanios & Yongcheol Shin, 2006. "Unit root tests in three-regime SETAR models," Econometrics Journal, Royal Economic Society, vol. 9(2), pages 252-278, July.
    9. Sandberg, Rickard, 2016. "Trends, unit roots, structural changes, and time-varying asymmetries in U.S. macroeconomic data: the Stock and Watson data re-examined," Economic Modelling, Elsevier, vol. 52(PB), pages 699-713.
    10. Munehisa Kasuya, 2005. "Regime-switching approach to monetary policy effects," Applied Economics, Taylor & Francis Journals, vol. 37(3), pages 307-326.
    11. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    12. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    13. Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002. "Smooth Transition Autoregressive Models — A Survey Of Recent Developments," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.
    14. van Dijk, Dick & Franses, Philip Hans & Paap, Richard, 2002. "A nonlinear long memory model, with an application to US unemployment," Journal of Econometrics, Elsevier, vol. 110(2), pages 135-165, October.
    15. Munehisa Kasuya, 2003. "Regime-Switching Approach to Monetary Policy Effects: Empirical Studies using a Smooth Transition Vector Autoregressive Model," Bank of Japan Working Paper Series Research and Statistics D, Bank of Japan.
    16. Filippo Altissimo & Giovanni L. Violante, 2001. "The non-linear dynamics of output and unemployment in the U.S," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(4), pages 461-486.
    17. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
    18. Kadilli, Anjeza & Krishnakumar, Jaya, 2022. "Smooth Transition Simultaneous Equation Models," Journal of Economic Dynamics and Control, Elsevier, vol. 145(C).
    19. González, Andrés & Teräsvirta, Timo & van Dijk, Dick & Yang, Yukai, 2005. "Panel Smooth Transition Regression Models," SSE/EFI Working Paper Series in Economics and Finance 604, Stockholm School of Economics, revised 11 Oct 2017.
    20. Andy Snell & George Kapetanios & Yongcheol Shin, 2004. "Testing for nonlinear cointegration between stock prices and dividends," Money Macro and Finance (MMF) Research Group Conference 2003 90, Money Macro and Finance Research Group.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:32:y:2010:i:3:p:515-523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.