IDEAS home Printed from
   My bibliography  Save this article

A nonlinear approach to modelling the residential electricity consumption in Ethiopia


  • Gabreyohannes, Emmanuel


In this paper an attempt is made to model, analyze and forecast the residential electricity consumption in Ethiopia using the self-exciting threshold autoregressive (SETAR) model and the smooth transition regression (STR) model. For comparison purposes, the application was also extended to standard linear models. During the empirical presentation of both models, significant nonlinear effects were found and linearity was rejected. The SETAR model was found out to be relatively better than the linear autoregressive model in out-of-sample point and interval (density) forecasts. Results from our STR model showed that the residual variance of the fitted STR model was only about 65.7% of that of the linear ARX model. Thus, we can conclude that the inclusion of the nonlinear part, which basically accounts for the arrival of extreme price events, leads to improvements in the explanatory abilities of the model for electricity consumption in Ethiopia.

Suggested Citation

  • Gabreyohannes, Emmanuel, 2010. "A nonlinear approach to modelling the residential electricity consumption in Ethiopia," Energy Economics, Elsevier, vol. 32(3), pages 515-523, May.
  • Handle: RePEc:eee:eneeco:v:32:y:2010:i:3:p:515-523

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002. "Smooth Transition Autoregressive Models — A Survey Of Recent Developments," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.
    2. Misiorek Adam & Trueck Stefan & Weron Rafal, 2006. "Point and Interval Forecasting of Spot Electricity Prices: Linear vs. Non-Linear Time Series Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-36, September.
    3. Clements, Michael P & Smith, Jeremy, 1999. "A Monte Carlo Study of the Forecasting Performance of Empirical SETAR Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(2), pages 123-141, March-Apr.
    4. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    5. Moral-Carcedo, Julian & Vicens-Otero, Jose, 2005. "Modelling the non-linear response of Spanish electricity demand to temperature variations," Energy Economics, Elsevier, vol. 27(3), pages 477-494, May.
    6. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    7. Hansen, Bruce E., 2000. "Testing for structural change in conditional models," Journal of Econometrics, Elsevier, vol. 97(1), pages 93-115, July.
    8. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    9. Pesaran, M. Hashem & Potter, Simon M., 1997. "A floor and ceiling model of US output," Journal of Economic Dynamics and Control, Elsevier, vol. 21(4-5), pages 661-695, May.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Omay, Tolga & Hasanov, Mübariz & Uçar, Nuri, 2014. "Energy consumption and economic growth: Evidence from nonlinear panel cointegration and causality tests," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 34(2), pages 36-55.
    2. Lee, Chien-Chiang & Chiu, Yi-Bin, 2013. "Modeling OECD energy demand: An international panel smooth transition error-correction model," International Review of Economics & Finance, Elsevier, vol. 25(C), pages 372-383.
    3. Hasanov, Mübariz, 2015. "The demand for transport fuels in Turkey," Energy Economics, Elsevier, vol. 51(C), pages 125-134.
    4. Xiaoli He & Hongwu Wang & Haoran Pan, 2014. "Energy Consumption, Economic Development and Temperature in China: Evidence from PSTR Model," Frontiers of Economics in China, Higher Education Press, vol. 9(4), pages 695-712, December.
    5. Nawaz, Saima & Iqbal, Nasir & Anwar, Saba, 2014. "Modelling electricity demand using the STAR (Smooth Transition Auto-Regressive) model in Pakistan," Energy, Elsevier, vol. 78(C), pages 535-542.
    6. repec:eee:rensus:v:74:y:2017:i:c:p:1189-1209 is not listed on IDEAS
    7. Hasanov, Mübariz & Telatar, Erdinc, 2011. "A re-examination of stationarity of energy consumption: Evidence from new unit root tests," Energy Policy, Elsevier, vol. 39(12), pages 7726-7738.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:32:y:2010:i:3:p:515-523. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.