IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login

Citations for "Testing for ARCH in the Presence of Additive Outliers"

by van Dijk, D.J.C. & Franses, Ph.H.B.F. & Lucas, A.

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as in new window

  1. Veiga, Helena & Grané, Aurea, 2010. "Outliers in Garch models and the estimation of risk measures," DES - Working Papers. Statistics and Econometrics. WS ws100502, Universidad Carlos III de Madrid. Departamento de Estadística.
  2. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, june. pag.
  3. Olivier Darné & Amélie Charles, 2011. "Large shocks in U.S. macroeconomic time series: 1860-1988," Cliometrica, Journal of Historical Economics and Econometric History, Association Française de Cliométrie (AFC), vol. 5(1), pages 79-100, January.
  4. WenShwo Fang & Stephen M. Miller, 2012. "Output Growth and Its Volatility: The Gold Standard through the Great Moderation," Working papers 2012-11, University of Connecticut, Department of Economics.
  5. Grané, Aurea & Veiga, Helena, 2010. "Wavelet-based detection of outliers in financial time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2580-2593, November.
  6. Amélie Charles & Olivier Darné, 2012. "Volatility Persistence in Crude Oil Markets," Working Papers hal-00719387, HAL.
  7. Elena Andreou & Eric Ghysels, 2001. "Detecting Multiple Breaks in Financial Market Volatility Dynamics," University of Cyprus Working Papers in Economics 0202, University of Cyprus Department of Economics.
  8. E. Ruiz & M.A. Carnero & D. Pereira, 2004. "Effects of Level Outliers on the Identification and Estimation of GARCH Models," Econometric Society 2004 Australasian Meetings 21, Econometric Society.
  9. Cizek, P., 2007. "Efficient Robust Estimation of Regression Models (Revision of DP 2006-08)," Discussion Paper 2007-87, Tilburg University, Center for Economic Research.
  10. Burkhard Raunig, 2003. "Testing for Longer Horizon Predictability of Return Volatility with an Application to the German," Working Papers 86, Oesterreichische Nationalbank (Austrian Central Bank).
  11. Maki, Daiki, 2015. "Wild bootstrap testing for cointegration in an ESTAR error correction model," Economic Modelling, Elsevier, vol. 47(C), pages 292-298.
  12. Behmiri, Niaz Bashiri & Manera, Matteo, 2015. "The role of outliers and oil price shocks on volatility of metal prices," Resources Policy, Elsevier, vol. 46(P2), pages 139-150.
  13. Cízek, Pavel, 2011. "Semiparametrically weighted robust estimation of regression models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 774-788, January.
  14. Veiga, Helena & Grané, Aurea, 2009. "Wavelet-based detection of outliers in volatility models," DES - Working Papers. Statistics and Econometrics. WS ws090403, Universidad Carlos III de Madrid. Departamento de Estadística.
  15. WenShwo Fang & Stephen M. Miller, 2008. "Modeling the Volatility of Real GDP Growth: The Case of Japan Revisited," Working papers 2008-47, University of Connecticut, Department of Economics.
  16. Lanne Markku, 2015. "Noncausality and inflation persistence," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(4), pages 469-481, September.
  17. Mohamed Ali Houfi & Ghassen El Montasser, 2010. "Effets des points aberrants sur les tests de normalité et de linéarité. Applications à la bourse de Tokyo," Romanian Economic Journal, Department of International Business and Economics from the Academy of Economic Studies Bucharest, vol. 13(36), pages 15-51, June.
  18. Corradi, Valentina & Swanson, Norman R., 2006. "The effect of data transformation on common cycle, cointegration, and unit root tests: Monte Carlo results and a simple test," Journal of Econometrics, Elsevier, vol. 132(1), pages 195-229, May.
  19. Li, Yushu & Shukur, Ghazi, 2009. "Testing for Unit Root against LSTAR Model: Wavelet Improvement under GARCH Distortion," CAFO Working Papers 2009:6, Centre for Labour Market Policy Research (CAFO), School of Business and Economics, Linnaeus University.
  20. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
  21. Battaglia, Francesco, 2005. "Outliers in functional autoregressive time series," Statistics & Probability Letters, Elsevier, vol. 72(4), pages 323-332, May.
  22. Kyrtsou, Catherine & Malliaris, Anastasios G., 2009. "The impact of information signals on market prices when agents have non-linear trading rules," Economic Modelling, Elsevier, vol. 26(1), pages 167-176, January.
  23. Anatolyev, Stanislav & Tarasyuk, Irina, 2015. "Missing mean does no harm to volatility!," Economics Letters, Elsevier, vol. 134(C), pages 62-64.
  24. Grossi, Luigi & Laurini, Fabrizio, 2009. "A robust forward weighted Lagrange multiplier test for conditional heteroscedasticity," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2251-2263, April.
  25. M. Angeles Carnero & Daniel Peña & Esther Ruiz, 2004. "Spurious And Hidden Volatility," Working Papers. Serie AD 2004-45, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
  26. Dilip M. Nachane, 2011. "Selected Problems in the Analysis of Nonstationary & Nonlinear Time Series," Journal of Quantitative Economics, The Indian Econometric Society, vol. 9(1), pages 1-17.
  27. Xibin Zhang & Maxwell L. King, 2002. "Influence Diagnostics in GARCH Processes," Monash Econometrics and Business Statistics Working Papers 19/02, Monash University, Department of Econometrics and Business Statistics.
  28. Charles, Amelie & Darne, Olivier, 2005. "Outliers and GARCH models in financial data," Economics Letters, Elsevier, vol. 86(3), pages 347-352, March.
  29. Charles, Amélie & Darné, Olivier, 2014. "Large shocks in the volatility of the Dow Jones Industrial Average index: 1928–2013," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 188-199.
  30. Ruiz, Esther & Hotta, Luiz & Trucíos, Carlos, 2015. "Robust bootstrap forecast densities for GARCH models: returns, volatilities and value-at-risk," DES - Working Papers. Statistics and Econometrics. WS ws1523, Universidad Carlos III de Madrid. Departamento de Estadística.
  31. Duchesne, Pierre, 2004. "On robust testing for conditional heteroscedasticity in time series models," Computational Statistics & Data Analysis, Elsevier, vol. 46(2), pages 227-256, June.
  32. Bali, Rakesh & Guirguis, Hany, 2007. "Extreme observations and non-normality in ARCH and GARCH," International Review of Economics & Finance, Elsevier, vol. 16(3), pages 332-346.
  33. Fokianos, Konstantions & Fried, Roland, 2009. "Interventions in ingarch processes," Technical Reports 2009,11, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  34. Veiga, Helena & Martín-Barragán, Belén & Grané, Aurea, 2014. "Outliers in multivariate Garch models," DES - Working Papers. Statistics and Econometrics. WS ws140503, Universidad Carlos III de Madrid. Departamento de Estadística.
  35. Ruiz, Esther & Peña, Daniel & Carnero, María Ángeles, 2001. "Outliers and conditional autoregressive heteroscedasticity in time series," DES - Working Papers. Statistics and Econometrics. WS ws010704, Universidad Carlos III de Madrid. Departamento de Estadística.
  36. M. Angeles Carnero & Daniel Peña & Esther Ruiz, 2008. "Estimating and Forecasting GARCH Volatility in the Presence of Outiers," Working Papers. Serie AD 2008-13, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
  37. Doornik, Jurgen A. & Ooms, Marius, 2008. "Multimodality in GARCH regression models," International Journal of Forecasting, Elsevier, vol. 24(3), pages 432-448.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.