IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb475/200911.html
   My bibliography  Save this paper

Interventions in ingarch processes

Author

Listed:
  • Fokianos, Konstantions
  • Fried, Roland

Abstract

We study the problem of intervention effects generating various types of outliers in a linear count time series model. This model belongs to the class of observation driven models and extends the class of Gaussian linear time series models within the exponential family framework. Studies about effects of covariates and interventions for count time series models have largely fallen behind due to the fact that the underlying process, whose behavior determines the dynamics of the observed process, is not observed. We suggest a computationally feasible approach to these problems, focusing especially on the detection and estimation of sudden shifts and outliers. To identify successfully such unusual events we employ the maximum of score tests, whose critical values in finite samples are determined by parametric bootstrap. The usefulness of the proposed methods is illustrated using simulated and real data examples.

Suggested Citation

  • Fokianos, Konstantions & Fried, Roland, 2009. "Interventions in ingarch processes," Technical Reports 2009,11, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  • Handle: RePEc:zbw:sfb475:200911
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/41051/1/60786799X.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Fokianos, Konstantinos & Rahbek, Anders & Tjøstheim, Dag, 2009. "Poisson Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1430-1439.
    2. van Dijk, Dick & Franses, Philip Hans & Lucas, Andre, 1999. "Testing for ARCH in the Presence of Additive Outliers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 539-562, Sept.-Oct.
    3. Richard A. Davis, 2003. "Observation-driven models for Poisson counts," Biometrika, Biometrika Trust, vol. 90(4), pages 777-790, December.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Jung, Robert C. & Kukuk, Martin & Liesenfeld, Roman, 2006. "Time series of count data: modeling, estimation and diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2350-2364, December.
    6. Konstantinos Fokianos & Benjamin Kedem, 2004. "Partial Likelihood Inference For Time Series Following Generalized Linear Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(2), pages 173-197, March.
    7. Charles, Amelie & Darne, Olivier, 2005. "Outliers and GARCH models in financial data," Economics Letters, Elsevier, vol. 86(3), pages 347-352, March.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:200911. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics). General contact details of provider: http://edirc.repec.org/data/isdorde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.