IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpem/0503018.html
   My bibliography  Save this paper

What causes the forecasting failure of Markov-Switching models? A Monte Carlo study

Author

Listed:
  • Marie Bessec

    (EURIsCO - University Paris Dauphine)

  • Othman Bouabdallah

    (EUREQua - University Paris Panthéon Sorbonne)

Abstract

This paper explores the forecasting abilities of Markov-Switching models. Although MS models generally display a superior in-sample fit relative to linear models, the gain in prediction remains small. We confirm this result using simulated data for a wide range of specifications by applying several tests of forecast accuracy and encompassing robust to nested models. In order to explain this poor performance, we use a forecasting error decomposition. We identify four components and derive their analytical expressions in different MS specifications. The relative contribution of each source is assessed through Monte Carlo simulations. We find that the main source of error is due to the misclassification of future regimes.

Suggested Citation

  • Marie Bessec & Othman Bouabdallah, 2005. "What causes the forecasting failure of Markov-Switching models? A Monte Carlo study," Econometrics 0503018, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpem:0503018
    Note: Type of Document - pdf; pages: 19
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/em/papers/0503/0503018.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Engel, Charles, 1994. "Can the Markov switching model forecast exchange rates?," Journal of International Economics, Elsevier, vol. 36(1-2), pages 151-165, February.
    2. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    3. Hans-Martin Krolzig & Juan Toro, 2004. "Classical and modern business cycle measurement: The European case," Spanish Economic Review, Springer;Spanish Economic Association, vol. 7(1), pages 1-21, January.
    4. Todd E. Clark & Michael W. McCracken, 2001. "Evaluating long-horizon forecasts," Research Working Paper RWP 01-14, Federal Reserve Bank of Kansas City.
    5. Cecchetti, Stephen G & Lam, Pok-sang & Mark, Nelson C, 1990. "Mean Reversion in Equilibrium Asset Prices," American Economic Review, American Economic Association, vol. 80(3), pages 398-418, June.
    6. Garcia, Rene & Perron, Pierre, 1996. "An Analysis of the Real Interest Rate under Regime Shifts," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 111-125, February.
    7. Bidarkota, Prasad V, 2001. "Alternative Regime Switching Models for Forecasting Inflation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(1), pages 21-35, January.
    8. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    9. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
    10. Michael P. Clements & Hans-Martin Krolzig, 1998. "A comparison of the forecast performance of Markov-switching and threshold autoregressive models of US GNP," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 47-75.
    11. Clements, Michael P & Krolzig, Hans-Martin, 2003. "Business Cycle Asymmetries: Characterization and Testing Based on Markov-Switching Autoregressions," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 196-211, January.
    12. Engel, Charles & Hamilton, James D, 1990. "Long Swings in the Dollar: Are They in the Data and Do Markets Know It?," American Economic Review, American Economic Association, vol. 80(4), pages 689-713, September.
    13. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. W. Miles, 2008. "Boom–Bust Cycles and the Forecasting Performance of Linear and Non-Linear Models of House Prices," The Journal of Real Estate Finance and Economics, Springer, vol. 36(3), pages 249-264, April.
    2. Weron, Rafal & Misiorek, Adam, 2008. "Forecasting spot electricity prices: A comparison of parametric and semiparametric time series models," International Journal of Forecasting, Elsevier, vol. 24(4), pages 744-763.
    3. Giordani, Paolo & Villani, Mattias, 2010. "Forecasting macroeconomic time series with locally adaptive signal extraction," International Journal of Forecasting, Elsevier, vol. 26(2), pages 312-325, April.
    4. Serinaldi, Francesco, 2011. "Distributional modeling and short-term forecasting of electricity prices by Generalized Additive Models for Location, Scale and Shape," Energy Economics, Elsevier, vol. 33(6), pages 1216-1226.
    5. Brent Bundick, 2007. "Do federal funds futures need adjustment for excess returns? a state-dependent approach," Research Working Paper RWP 07-08, Federal Reserve Bank of Kansas City.
    6. Mahua Barari & Nityananda Sarkar & Srikanta Kundu & Kushal Banik Chowdhury, 2014. "Forecasting House Prices in the United States with Multiple Structural Breaks," International Econometric Review (IER), Econometric Research Association, vol. 6(1), pages 1-23, April.
    7. Misiorek Adam & Trueck Stefan & Weron Rafal, 2006. "Point and Interval Forecasting of Spot Electricity Prices: Linear vs. Non-Linear Time Series Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-36, September.
    8. Joanna Janczura & Rafał Weron, 2013. "Goodness-of-fit testing for the marginal distribution of regime-switching models with an application to electricity spot prices," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(3), pages 239-270, July.
    9. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    10. Katarzyna Maciejowska & Rafal Weron, 2015. "Short- and mid-term forecasting of baseload electricity prices in the UK: The impact of intra-day price relationships and market fundamentals," HSC Research Reports HSC/15/04, Hugo Steinhaus Center, Wroclaw University of Technology.
    11. Adam Misiorek & Rafal Weron, 2006. "Interval forecasting of spot electricity prices," HSC Research Reports HSC/06/05, Hugo Steinhaus Center, Wroclaw University of Technology.
    12. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601, December.
    13. Arora Siddharth & Little Max A. & McSharry Patrick E., 2013. "Nonlinear and nonparametric modeling approaches for probabilistic forecasting of the US gross national product," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(4), pages 395-420, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clarida, Richard H. & Sarno, Lucio & Taylor, Mark P. & Valente, Giorgio, 2003. "The out-of-sample success of term structure models as exchange rate predictors: a step beyond," Journal of International Economics, Elsevier, vol. 60(1), pages 61-83, May.
    2. Yuan, Chunming, 2011. "The exchange rate and macroeconomic determinants: Time-varying transitional dynamics," The North American Journal of Economics and Finance, Elsevier, vol. 22(2), pages 197-220, August.
    3. Doğan, İbrahim & Bilgili, Faik, 2014. "The non-linear impact of high and growing government external debt on economic growth: A Markov Regime-switching approach," Economic Modelling, Elsevier, vol. 39(C), pages 213-220.
    4. repec:dau:papers:123456789/6064 is not listed on IDEAS
    5. Garcia, Rene, 1998. "Asymptotic Null Distribution of the Likelihood Ratio Test in Markov Switching Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(3), pages 763-788, August.
    6. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
    7. Lee, Hwa-Taek & Yoon, Gawon, 2007. "Does Purchasing Power Parity Hold Sometimes? Regime Switching in Real Exchange Rates," Economics Working Papers 2007-24, Christian-Albrechts-University of Kiel, Department of Economics.
    8. Gianna Boero & Emanuela Marrocu, 2005. "Evaluating non-linear models on point and interval forecasts: an application with exchange rates," BNL Quarterly Review, Banca Nazionale del Lavoro, vol. 58(232), pages 91-120.
    9. Wu, Jyh-Lin & Hu, Yu-Hau, 2009. "New evidence on nominal exchange rate predictability," Journal of International Money and Finance, Elsevier, vol. 28(6), pages 1045-1063, October.
    10. Sean D. Campbell, 2002. "Specification Testing and Semiparametric Estimation of Regime Switching Models: An Examination of the US Short Term Interest Rate," Working Papers 2002-26, Brown University, Department of Economics.
    11. Hwa-Taek Lee & Gawon Yoon, 2013. "Does purchasing power parity hold sometimes? Regime switching in real exchange rates," Applied Economics, Taylor & Francis Journals, vol. 45(16), pages 2279-2294, June.
    12. Michał Rubaszek & Paweł Skrzypczyński & Grzegorz Koloch, 2010. "Forecasting the Polish Zloty with Non-Linear Models," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 2(2), pages 151-167, March.
    13. Dick van Dijk & Philip Hans Franses & Michael P. Clements & Jeremy Smith, 2003. "On SETAR non-linearity and forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(5), pages 359-375.
    14. Eleni Constantinou & Robert Georgiades & Avo Kazandjian & George Kouretas, 2005. "Regime Switching and Artificial Neural Network Forecasting," Working Papers 0502, University of Crete, Department of Economics.
    15. Eleni Constantinou & Robert Georgiades & Avo Kazandjian & Georgios P. Kouretas, 2006. "Regime switching and artificial neural network forecasting of the Cyprus Stock Exchange daily returns," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 11(4), pages 371-383.
    16. Polbin, Andrey & Shumilov, Andrei & Bedin, Andrey & Kulikov, Alexander, 2019. "Модель Реального Обменного Курса Рубля С Марковскими Переключениями Режимов [Modeling real exchange rate of the Russian ruble using Markov regime-switching approach]," MPRA Paper 93310, University Library of Munich, Germany.
    17. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
    18. Matteo Manera & Alessandro Cologni, 2006. "The Asymmetric Effects of Oil Shocks on Output Growth: A Markov-Switching Analysis for the G-7 Countries," Working Papers 2006.29, Fondazione Eni Enrico Mattei.
    19. Yuan, Chunming, 2011. "Forecasting exchange rates: The multi-state Markov-switching model with smoothing," International Review of Economics & Finance, Elsevier, vol. 20(2), pages 342-362, April.
    20. Bazdresch, Santiago & Werner, Alejandro, 2005. "Regime switching models for the Mexican peso," Journal of International Economics, Elsevier, vol. 65(1), pages 185-201, January.
    21. Auer, Benjamin R. & Rottmann, Horst, 2019. "Have capital market anomalies worldwide attenuated in the recent era of high liquidity and trading activity?," Journal of Economics and Business, Elsevier, vol. 103(C), pages 61-79.

    More about this item

    Keywords

    Forecasting; Regime Shifts; Markov-Switching.;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:0503018. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.