IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v26yi2p312-325.html
   My bibliography  Save this article

Forecasting macroeconomic time series with locally adaptive signal extraction

Author

Listed:
  • Giordani, Paolo
  • Villani, Mattias

Abstract

We introduce a non-Gaussian dynamic mixture model for macroeconomic forecasting. The locally adaptive signal extraction and regression (LASER) model is designed to capture relatively persistent AR processes (signal) which are contaminated by high frequency noise. The distributions of the innovations in both noise and signal are modeled robustly using mixtures of normals. The mean of the process and the variances of the signal and noise are allowed to shift either suddenly or gradually at unknown locations and unknown numbers of times. The model is then capable of capturing movements in the mean and conditional variance of a series, as well as in the signal-to-noise ratio. Four versions of the model are estimated by Bayesian methods and used to forecast a total of nine quarterly macroeconomic series from the US, Sweden and Australia. We observe that allowing for infrequent and large parameter shifts while imposing normal and homoskedastic errors often leads to erratic forecasts, but that the model typically forecasts well if it is made more robust by allowing for non-normal errors and time varying variances. Our main finding is that, for the nine series we analyze, specifications with infrequent and large shifts in error variances outperform both fixed parameter specifications and smooth, continuous shifts when it comes to interval coverage.

Suggested Citation

  • Giordani, Paolo & Villani, Mattias, 2010. "Forecasting macroeconomic time series with locally adaptive signal extraction," International Journal of Forecasting, Elsevier, vol. 26(2), pages 312-325, April.
  • Handle: RePEc:eee:intfor:v:26:y::i:2:p:312-325
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(09)00212-X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bessec Marie & Bouabdallah Othman, 2005. "What Causes The Forecasting Failure of Markov-Switching Models? A Monte Carlo Study," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(2), pages 1-24, June.
    2. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    3. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
    4. Giordani, Paolo & Kohn, Robert, 2008. "Efficient Bayesian Inference for Multiple Change-Point and Mixture Innovation Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 66-77, January.
    5. Clive W.J. Granger & Namwon Hyung, 2013. "Occasional Structural Breaks and Long Memory," Annals of Economics and Finance, Society for AEF, vol. 14(2), pages 739-764, November.
    6. Chib, Siddhartha, 1998. "Estimation and comparison of multiple change-point models," Journal of Econometrics, Elsevier, vol. 86(2), pages 221-241, June.
    7. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    8. Gary Koop & Simon M. Potter, 2009. "Prior Elicitation In Multiple Change-Point Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(3), pages 751-772, August.
    9. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huber, Florian, 2016. "Density forecasting using Bayesian global vector autoregressions with stochastic volatility," International Journal of Forecasting, Elsevier, vol. 32(3), pages 818-837.
    2. Wagner Piazza Gaglianone & Luiz Renato Lima, 2014. "Constructing Optimal Density Forecasts From Point Forecast Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 736-757, August.
    3. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    4. Liu, Yuelin & Morley, James, 2014. "Structural evolution of the postwar U.S. economy," Journal of Economic Dynamics and Control, Elsevier, vol. 42(C), pages 50-68.
    5. Huber, Florian, 2014. "Density Forecasting using Bayesian Global Vector Autoregressions with Common Stochastic Volatility," Department of Economics Working Paper Series 4280, WU Vienna University of Economics and Business.
    6. Bulkley, George & Giordani, Paolo, 2011. "Structural breaks, parameter uncertainty, and term structure puzzles," Journal of Financial Economics, Elsevier, vol. 102(1), pages 222-232, October.
    7. Garratt, Anthony & Mise, Emi, 2014. "Forecasting exchange rates using panel model and model averaging," Economic Modelling, Elsevier, vol. 37(C), pages 32-40.
    8. Daniele Bianchi & Massimo Guidolin & Francesco Ravazzolo, 2017. "Macroeconomic Factors Strike Back: A Bayesian Change-Point Model of Time-Varying Risk Exposures and Premia in the U.S. Cross-Section," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 110-129, January.
    9. Todd E. Clark & Francesco Ravazzolo, 2012. "The macroeconomic forecasting performance of autoregressive models with alternative specifications of time-varying volatility," Working Paper 1218, Federal Reserve Bank of Cleveland.

    More about this item

    Keywords

    Bayesian inference Forecast evaluation Regime switching State space modeling Dynamic mixture models;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:26:y::i:2:p:312-325. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.