Improvement of Regression Forecasting Models
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Marianne Sensier & Dick van Dijk, 2004.
"Testing for Volatility Changes in U.S. Macroeconomic Time Series,"
The Review of Economics and Statistics, MIT Press, vol. 86(3), pages 833-839, August.
- M Sensier & D van Dijk, 2003. "Testing for Volatility Changes in US Macroeconomic Time Series," Centre for Growth and Business Cycle Research Discussion Paper Series 36, Economics, The University of Manchester.
- Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
- Rahim Alhamzawi & Keming Yu, 2012. "Variable selection in quantile regression via Gibbs sampling," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(4), pages 799-813, August.
- Giordani, Paolo & Villani, Mattias, 2010.
"Forecasting macroeconomic time series with locally adaptive signal extraction,"
International Journal of Forecasting, Elsevier, vol. 26(2), pages 312-325, April.
- Giordani, Paolo & Villani, Mattias, 2009. "Forecasting Macroeconomic Time Series With Locally Adaptive Signal Extraction," Working Paper Series 234, Sveriges Riksbank (Central Bank of Sweden).
- Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
- Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
- Marco Del Negro & Giorgio E. Primiceri, 2015.
"Time Varying Structural Vector Autoregressions and Monetary Policy: A Corrigendum,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(4), pages 1342-1345.
- Marco Del Negro & Giorgio E. Primiceri, 2013. "Time-Varying Structural Vector Autoregressions and Monetary Policy: a Corrigendum," Staff Reports 619, Federal Reserve Bank of New York.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Todd E. Clark & Michael W. McCracken & Elmar Mertens, 2020.
"Modeling Time-Varying Uncertainty of Multiple-Horizon Forecast Errors,"
The Review of Economics and Statistics, MIT Press, vol. 102(1), pages 17-33, March.
- Todd E. Clark & Michael W. McCracken & Elmar Mertens, 2017. "Modeling Time-Varying Uncertainty of Multiple-Horizon Forecast Errors," Working Papers (Old Series) 1715, Federal Reserve Bank of Cleveland.
- Todd E. Clark & Michael W. McCracken & Elmar Mertens, 2017. "Modeling Time-Varying Uncertainty of Multiple-Horizon Forecast Errors," Working Papers 2017-026, Federal Reserve Bank of St. Louis.
- Todd E Clark & Michael W McCracken & Elmar Mertens, 2017. "Modeling Time-Varying Uncertainty of Multiple-Horizon Forecast Errors," BIS Working Papers 667, Bank for International Settlements.
- Todd E. Clark & Michael W. McCracken & Elmar Mertens, 2017. "Modeling Time-Varying Uncertainty of Multiple-Horizon Forecast Errors," Working Papers 17-15R, Federal Reserve Bank of Cleveland.
- Todd E. Clark & Francesco Ravazzolo, 2012.
"The macroeconomic forecasting performance of autoregressive models with alternative specifications of time-varying volatility,"
Working Paper
2012/09, Norges Bank.
- Todd E. Clark & Francesco Ravazzolo, 2012. "The macroeconomic forecasting performance of autoregressive models with alternative specifications of time-varying volatility," Working Papers (Old Series) 1218, Federal Reserve Bank of Cleveland.
- Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
- Davide Pettenuzzo & Francesco Ravazzolo, 2016.
"Optimal Portfolio Choice Under Decision‐Based Model Combinations,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
- Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal Portfolio Choice under Decision-Based Model Combinations," Working Papers 80, Brandeis University, Department of Economics and International Business School.
- Davide Pettenuzzo & Francesco Ravazzolo, 2015. "Optimal Portfolio Choice under Decision-Based Model Combinations," Working Papers No 9/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal portfolio choice under decision-based model combinations," Working Paper 2014/15, Norges Bank.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015.
"Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2012. "Real-time nowcasting with a Bayesian mixed frequency model with stochastic volatility," Working Papers (Old Series) 1227, Federal Reserve Bank of Cleveland.
- Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2013. "Real-Time Nowcasting with a Bayesian Mixed Frequency Model with Stochastic Volatility," CEPR Discussion Papers 9312, C.E.P.R. Discussion Papers.
- Kelly Trinh & Bo Zhang & Chenghan Hou, 2025. "Macroeconomic real‐time forecasts of univariate models with flexible error structures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(1), pages 59-78, January.
- Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87, September.
- Pfarrhofer, Michael, 2022.
"Modeling tail risks of inflation using unobserved component quantile regressions,"
Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
- Michael Pfarrhofer, 2021. "Modeling tail risks of inflation using unobserved component quantile regressions," Papers 2103.03632, arXiv.org, revised Oct 2021.
- Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2023.
"Tail Forecasting With Multivariate Bayesian Additive Regression Trees,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 979-1022, August.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2021. "Tail Forecasting with Multivariate Bayesian Additive Regression Trees," Working Papers 21-08R, Federal Reserve Bank of Cleveland, revised 12 Jul 2022.
- Clark, Todd & Huber, Florian & Koop, Gary & Marcellino, Massimiliano & Pfarrhofer, Michael, 2022. "Tail Forecasting with Multivariate Bayesian Additive Regression Trees," CEPR Discussion Papers 17461, C.E.P.R. Discussion Papers.
- Gregor Bäurle & Elizabeth Steiner & Gabriel Züllig, 2021.
"Forecasting the production side of GDP,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 458-480, April.
- Gregor Bäurle & Elizabeth Steiner & Gabriel Züllig, 2018. "Forecasting the production side of GDP," Working Papers 2018-16, Swiss National Bank.
- Karlsson, Sune & Mazur, Stepan & Nguyen, Hoang, 2023.
"Vector autoregression models with skewness and heavy tails,"
Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
- Sune Karlsson & Stepan Mazur & Hoang Nguyen, 2021. "Vector autoregression models with skewness and heavy tails," Papers 2105.11182, arXiv.org.
- Karlsson, Sune & Mazur, Stepan & Nguyen, Hoang, 2021. "Vector autoregression models with skewness and heavy tails," Working Papers 2021:8, Örebro University, School of Business.
- Daniele Bianchi & Massimo Guidolin & Francesco Ravazzolo, 2017.
"Macroeconomic Factors Strike Back: A Bayesian Change-Point Model of Time-Varying Risk Exposures and Premia in the U.S. Cross-Section,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 110-129, January.
- Daniele Bianchi & Massimo Guidolin & Francesco Ravazzolo, 2013. "Macroeconomic factors strike back: A Bayesian change-point model of time-varying risk exposures and premia in the U.S. cross-section," Working Paper 2013/19, Norges Bank.
- Daniele Bianchi & Massimo Guidolin & Francesco Ravazzolo, 2015. "Macroeconomic Factors Strike Back: A Bayesian Change-Point Model of Time-Varying Risk Exposures and Premia in the U.S. Cross-Section," Working Papers 550, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Berg, Tim O. & Henzel, Steffen R., 2015.
"Point and density forecasts for the euro area using Bayesian VARs,"
International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
- Tim Oliver Berg & Steffen Henzel, 2013. "Point and Density Forecasts for the Euro Area Using Many Predictors: Are Large BVARs Really Superior?," ifo Working Paper Series 155, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Tim Oliver Berg & Steffen Henzel, 2014. "Point and Density Forecasts for the Euro Area Using Bayesian VARs," CESifo Working Paper Series 4711, CESifo.
- Berg, Tim Oliver & Henzel, Steffen, 2013. "Point and Density Forecasts for the Euro Area Using Many Predictors: Are Large BVARs Really Superior?," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79783, Verein für Socialpolitik / German Economic Association.
- Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
- Delle Monache, Davide & Petrella, Ivan, 2017.
"Adaptive models and heavy tails with an application to inflation forecasting,"
International Journal of Forecasting, Elsevier, vol. 33(2), pages 482-501.
- Davide Delle Monache & Ivan Petrella, 2016. "Adaptive models and heavy tails with an application to inflation forecasting," BCAM Working Papers 1603, Birkbeck Centre for Applied Macroeconomics.
- Delle Monache, Davide & Petrella, Ivan, 2016. "Adaptive models and heavy tails with an application to inflation forecasting," MPRA Paper 75424, University Library of Munich, Germany.
- Marta Banbura & Andries van Vlodrop, 2018. "Forecasting with Bayesian Vector Autoregressions with Time Variation in the Mean," Tinbergen Institute Discussion Papers 18-025/IV, Tinbergen Institute.
- Ravazzolo Francesco & Rothman Philip, 2016.
"Oil-price density forecasts of US GDP,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 441-453, September.
- Francesco Ravazzolo & Philip Rothman, 2015. "Oil-Price Density Forecasts of U.S. GDP," Working Papers No 10/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Yu Bai & Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022.
"Macroeconomic forecasting in a multi‐country context,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1230-1255, September.
- Bai, Yu & Carriero, Andrea & Clark, Todd & Marcellino, Massimiliano, 2022. "Macroeconomic Forecasting in a Multi-country Context," CEPR Discussion Papers 16994, C.E.P.R. Discussion Papers.
- Yu Bai & Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Macroeconomic Forecasting in a Multi-country Context," Working Papers 22-02, Federal Reserve Bank of Cleveland.
- Tamás Kiss & Stepan Mazur & Hoang Nguyen & Pär Österholm, 2023.
"Modeling the relation between the US real economy and the corporate bond‐yield spread in Bayesian VARs with non‐Gaussian innovations,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 347-368, March.
- Kiss, Tamás & Mazur, Stepan & Nguyen, Hoang & Österholm, Pär, 2021. "Modelling the Relation between the US Real Economy and the Corporate Bond-Yield Spread in Bayesian VARs with non-Gaussian Disturbances," Working Papers 2021:9, Örebro University, School of Business.
More about this item
JEL classification:
- R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
- Z0 - Other Special Topics - - General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:masjnl:v:9:y:2015:i:6:p:344. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.