IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/10734.html
   My bibliography  Save this paper

Segmentation for path models and unobserved heterogeneity: The finite mixture partial least squares approach

Author

Listed:
  • Ringle, Christian M.

Abstract

Partial least squares-based path modeling with latent variables is a methodology that allows to estimate complex cause-effect relationships using empirical data. The assumption that the data is collected from a single homogeneous population is often unrealistic. Identification of different groups of consumers in connection with estimates in the inner path model constitutes a critical issue for applying the path modeling methodology to form effective marketing strategies. Sequential clustering strategies often fail to provide useful results for segment-specific partial least squares analyses. For that reason, the purpose of this paper is fourfold. First, it presents a finite mixture path modeling methodology for separating data based on the heterogeneity of estimates in the inner path model, as it is implemented in a software application for statistical computation. This new approach permits reliable identification of distinctive customer segments with their characteristic estimates for relationships of latent variables in the structural model. Second, it presents an application of the approach to two numerical examples, using experimental and empirical data, as a means of verifying the methodology's usefulness for multigroup path analyses in marketing research. Third, it analyses the advantages of finite mixture partial least squares to a sequential clustering strategy. Fourth, the initial application and critical review of the new segmentation technique for partial least squares path modeling allows us to unveil and discuss some of the technique's problematic aspects and to address significant areas of future research.

Suggested Citation

  • Ringle, Christian M., 2006. "Segmentation for path models and unobserved heterogeneity: The finite mixture partial least squares approach," MPRA Paper 10734, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:10734
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/10734/1/MPRA_paper_10734.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Carsten Hahn & Michael D. Johnson & Andreas Herrmann & Frank Huber, 2002. "Capturing Customer Heterogeneity Using A Finite Mixture Pls Approach," Schmalenbach Business Review (sbr), LMU Munich School of Management, vol. 54(3), pages 243-269, July.
    2. Eugene W. Anderson & Mary W. Sullivan, 1993. "The Antecedents and Consequences of Customer Satisfaction for Firms," Marketing Science, INFORMS, vol. 12(2), pages 125-143.
    3. Tenenhaus, Michel & Vinzi, Vincenzo Esposito & Chatelin, Yves-Marie & Lauro, Carlo, 2005. "PLS path modeling," Computational Statistics & Data Analysis, Elsevier, vol. 48(1), pages 159-205, January.
    4. Jarvis, Cheryl Burke & MacKenzie, Scott B & Podsakoff, Philip M, 2003. " A Critical Review of Construct Indicators and Measurement Model Misspecification in Marketing and Consumer Research," Journal of Consumer Research, Oxford University Press, vol. 30(2), pages 199-218, September.
    5. Sargeant, Adrian & Ford, John B. & West, Douglas C., 2006. "Perceptual determinants of nonprofit giving behavior," Journal of Business Research, Elsevier, vol. 59(2), pages 155-165, February.
    6. Claes Fornell & William T. Robinson & Birger Wernerfelt, 1985. "Consumption Experience and Sales Promotion Expenditure," Management Science, INFORMS, vol. 31(9), pages 1084-1105, September.
    7. Venkatram Ramaswamy & Wayne S. Desarbo & David J. Reibstein & William T. Robinson, 1993. "An Empirical Pooling Approach for Estimating Marketing Mix Elasticities with PIMS Data," Marketing Science, INFORMS, vol. 12(1), pages 103-124.
    8. Karl J├Âreskog, 1978. "Structural analysis of covariance and correlation matrices," Psychometrika, Springer;The Psychometric Society, vol. 43(4), pages 443-477, December.
    9. Vikas Mittal & Eugene W. Anderson & Akin Sayrak & Pandu Tadikamalla, 2005. "Dual Emphasis and the Long-Term Financial Impact of Customer Satisfaction," Marketing Science, INFORMS, vol. 24(4), pages 544-555, August.
    10. McLachlan, Geoffrey J. & Krishnan, Thriyambakam & Ng, See Ket, 2004. "The EM Algorithm," Papers 2004,24, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    11. Claes Fornell & Peter Lorange & Johan Roos, 1990. "The Cooperative Venture Formation Process: A Latent Variable Structural Modeling Approach," Management Science, INFORMS, vol. 36(10), pages 1246-1255, October.
    12. Viswanath Venkatesh & Ritu Agarwal, 2006. "Turning Visitors into Customers: A Usability-Centric Perspective on Purchase Behavior in Electronic Channels," Management Science, INFORMS, vol. 52(3), pages 367-382, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:touman:v:46:y:2015:i:c:p:64-79 is not listed on IDEAS
    2. Marko Sarstedt & Christian Ringle, 2010. "Treating unobserved heterogeneity in PLS path modeling: a comparison of FIMIX-PLS with different data analysis strategies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1299-1318.
    3. repec:eee:touman:v:51:y:2015:i:c:p:35-48 is not listed on IDEAS
    4. Lockstr├Âm, Martin & Lei, Liu, 2013. "Antecedents to supplier integration in China: A partial least squares analysis," International Journal of Production Economics, Elsevier, vol. 141(1), pages 295-306.

    More about this item

    Keywords

    partial least squares; PLS; path modeling; segmentation; latent class; finite mixture; customer satisfaction; brand preference;

    JEL classification:

    • M0 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - General
    • M31 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Marketing
    • C19 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:10734. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.