IDEAS home Printed from https://ideas.repec.org/p/fip/fedmoi/99164.html
   My bibliography  Save this paper

New Technologies and Jobs in Europe

Author

Listed:
  • Stefania Albanesi
  • Wabitsch Alena
  • António Dias da Silva
  • Juan F. Jimeno
  • Ana Lamo

Abstract

We examine the link between labour market developments and new technologies such as artificial intelligence (AI) and software in 16 European countries over the period 2011-2019. Using data for occupations at the 3-digit level, we find that on average employment shares have increased in occupations more exposed to AI. This is particularly the case for occupations with a relatively higher proportion of younger and skilled workers. While there exists heterogeneity across countries, only very few countries show a decline in employment shares of occupations more exposed to AI-enabled automation. Country heterogeneity for this result seems to be linked to the pace of technology diffusion and education, but also to the level of product market regulation (competition) and employment protection laws. In contrast to the findings for employment, we find little evidence for a relationship between relative wages across occupations and potential exposures to new technologies

Suggested Citation

  • Stefania Albanesi & Wabitsch Alena & António Dias da Silva & Juan F. Jimeno & Ana Lamo, 2024. "New Technologies and Jobs in Europe," Opportunity and Inclusive Growth Institute Working Papers 105, Federal Reserve Bank of Minneapolis.
  • Handle: RePEc:fip:fedmoi:99164
    DOI: 10.21034/iwp.105
    as

    Download full text from publisher

    File URL: https://www.minneapolisfed.org/institute/working-papers-institute/iwp105.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.21034/iwp.105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daron Acemoglu & Pascual Restrepo, 2020. "The wrong kind of AI? Artificial intelligence and the future of labour demand," Cambridge Journal of Regions, Economy and Society, Cambridge Political Economy Society, vol. 13(1), pages 25-35.
    2. Daron Acemoglu & David Autor & Jonathon Hazell & Pascual Restrepo, 2022. "Artificial Intelligence and Jobs: Evidence from Online Vacancies," Journal of Labor Economics, University of Chicago Press, vol. 40(S1), pages 293-340.
    3. Katz, Lawrence F. & Autor, David H., 1999. "Changes in the wage structure and earnings inequality," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 26, pages 1463-1555, Elsevier.
    4. Alessandra Bonfiglioli & Rosario Crinò & Gino Gancia & Ioannis Papadakis, 2023. "Artificial Intelligence and Jobs: Evidence from US Commuting Zones," CESifo Working Paper Series 10685, CESifo.
    5. Maarten Goos & Alan Manning & Anna Salomons, 2014. "Explaining Job Polarization: Routine-Biased Technological Change and Offshoring," American Economic Review, American Economic Association, vol. 104(8), pages 2509-2526, August.
    6. David H. Autor & Frank Levy & Richard J. Murnane, 2003. "The skill content of recent technological change: an empirical exploration," Proceedings, Federal Reserve Bank of San Francisco, issue Nov.
    7. Alekseeva, Liudmila & Azar, José & Giné, Mireia & Samila, Sampsa & Taska, Bledi, 2021. "The demand for AI skills in the labor market," Labour Economics, Elsevier, vol. 71(C).
    8. David H. Autor & David Dorn, 2013. "The Growth of Low-Skill Service Jobs and the Polarization of the US Labor Market," American Economic Review, American Economic Association, vol. 103(5), pages 1553-1597, August.
    9. Basso, Henrique S. & Jimeno, Juan F., 2021. "From secular stagnation to robocalypse? Implications of demographic and technological changes," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 833-847.
    10. Daron Acemoglu & Pascual Restrepo, 2020. "Robots and Jobs: Evidence from US Labor Markets," Journal of Political Economy, University of Chicago Press, vol. 128(6), pages 2188-2244.
    11. Jimeno, Juan F. & Thomas, Carlos, 2013. "Collective bargaining, firm heterogeneity and unemployment," European Economic Review, Elsevier, vol. 59(C), pages 63-79.
    12. Anton Korinek, 2023. "Generative AI for Economic Research: Use Cases and Implications for Economists," Journal of Economic Literature, American Economic Association, vol. 61(4), pages 1281-1317, December.
    13. Claudia Goldin & Lawrence F. Katz, 1998. "The Origins of Technology-Skill Complementarity," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(3), pages 693-732.
    14. Paul Goldsmith-Pinkham & Isaac Sorkin & Henry Swift, 2020. "Bartik Instruments: What, When, Why, and How," American Economic Review, American Economic Association, vol. 110(8), pages 2586-2624, August.
    15. Cortes, Guido Matias & Jaimovich, Nir & Siu, Henry E., 2017. "Disappearing routine jobs: Who, how, and why?," Journal of Monetary Economics, Elsevier, vol. 91(C), pages 69-87.
    16. Maarten Goos & Alan Manning, 2007. "Lousy and Lovely Jobs: The Rising Polarization of Work in Britain," The Review of Economics and Statistics, MIT Press, vol. 89(1), pages 118-133, February.
    17. David H. Autor, 2015. "Why Are There Still So Many Jobs? The History and Future of Workplace Automation," Journal of Economic Perspectives, American Economic Association, vol. 29(3), pages 3-30, Summer.
    18. Tyna Eloundou & Sam Manning & Pamela Mishkin & Daniel Rock, 2023. "GPTs are GPTs: An Early Look at the Labor Market Impact Potential of Large Language Models," Papers 2303.10130, arXiv.org, revised Aug 2023.
    19. Daron Acemoglu, 2024. "The Simple Macroeconomics of AI," NBER Working Papers 32487, National Bureau of Economic Research, Inc.
    20. Edward W. Felten & Manav Raj & Robert Seamans, 2018. "A Method to Link Advances in Artificial Intelligence to Occupational Abilities," AEA Papers and Proceedings, American Economic Association, vol. 108, pages 54-57, May.
    21. Ed Felten & Manav Raj & Robert Seamans, 2023. "How will Language Modelers like ChatGPT Affect Occupations and Industries?," Papers 2303.01157, arXiv.org, revised Mar 2023.
    22. Gmyrek, Pawel, & Berg, Janine, & Bescond, David,, 2023. "Generative AI and jobs a global analysis of potential effects on job quantity and quality," ILO Working Papers 995324892702676, International Labour Organization.
    23. David H. Autor & Lawrence F. Katz & Alan B. Krueger, 1998. "Computing Inequality: Have Computers Changed the Labor Market?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1169-1213.
    24. Wojciech Hardy & Roma Keister & Piotr Lewandowski, 2018. "Educational upgrading, structural change and the task composition of jobs in Europe," The Economics of Transition, The European Bank for Reconstruction and Development, vol. 26(2), pages 201-231, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Albanesi, Stefania & Dias da Silva, Antonio & Jimeno, Juan Francisco & Lamo, Ana & Wabitsch, Alena, 2023. "New Technologies and Jobs in Europe," CEPR Discussion Papers 18220, C.E.P.R. Discussion Papers.
    2. Jasmine Mondolo, 2022. "The composite link between technological change and employment: A survey of the literature," Journal of Economic Surveys, Wiley Blackwell, vol. 36(4), pages 1027-1068, September.
    3. Łukasz Arendt & Eugeniusz Kwiatkowski, 2023. "Kontrowersje wokół wpływu nowoczesnych technologii na zatrudnienie i bezrobocie," Ekonomista, Polskie Towarzystwo Ekonomiczne, issue 2, pages 195-216.
    4. Caselli, Mauro & Fracasso, Andrea & Scicchitano, Sergio & Traverso, Silvio & Tundis, Enrico, 2021. "Stop worrying and love the robot: An activity-based approach to assess the impact of robotization on employment dynamics," GLO Discussion Paper Series 802, Global Labor Organization (GLO).
    5. Usabiaga, Carlos & Núñez, Fernando & Arendt, Lukasz & Gałecka-Burdziak, Ewa & Pater, Robert, 2022. "Skill requirements and labour polarisation: An association analysis based on Polish online job offers," Economic Modelling, Elsevier, vol. 115(C).
    6. David Autor & Caroline Chin & Anna Salomons & Bryan Seegmiller, 2024. "New Frontiers: The Origins and Content of New Work, 1940–2018," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 139(3), pages 1399-1465.
    7. Maarten Goos & Melanie Arntz & Ulrich Zierahn & Terry Gregory & Stephanie Carretero Gomez & Ignacio Gonzalez Vazquez & Koen Jonkers, 2019. "The Impact of Technological Innovation on the Future of Work," JRC Working Papers on Labour, Education and Technology 2019-03, Joint Research Centre.
    8. Zhang, Xinchun & Sun, Murong & Liu, Jianxu & Xu, Aijia, 2024. "The nexus between industrial robot and employment in China: The effects of technology substitution and technology creation," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
    9. Falck, Oliver & Heimisch-Roecker, Alexandra & Wiederhold, Simon, 2021. "Returns to ICT skills," Research Policy, Elsevier, vol. 50(7).
    10. Pablo Casas & Concepción Román, 2024. "The impact of artificial intelligence in the early retirement decision," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 51(3), pages 583-618, August.
    11. Peng, Fei & Anwar, Sajid & Kang, Lili, 2017. "New technology and old institutions: An empirical analysis of the skill-biased demand for older workers in Europe," Economic Modelling, Elsevier, vol. 64(C), pages 1-19.
    12. T. Gries & R. Grundmann & I. Palnau & M. Redlin, 2017. "Innovations, growth and participation in advanced economies - a review of major concepts and findings," International Economics and Economic Policy, Springer, vol. 14(2), pages 293-351, April.
    13. David J. Deming, 2017. "The Growing Importance of Social Skills in the Labor Market," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(4), pages 1593-1640.
    14. David Kunst, 2019. "Deskilling among Manufacturing Production Workers," Tinbergen Institute Discussion Papers 19-050/VI, Tinbergen Institute, revised 30 Dec 2020.
    15. Goos, Maarten & Rademakers, Emilie & Röttger, Ronja, 2021. "Routine-Biased technical change: Individual-Level evidence from a plant closure," Research Policy, Elsevier, vol. 50(7).
    16. Thomsen, Stephan L, 2018. "Die Rolle der Computerisierung und Digitalisierung für Beschäftigung und Einkommen," Hannover Economic Papers (HEP) dp-645, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    17. Hensvik, Lena & Skans, Oskar Nordström, 2023. "The skill-specific impact of past and projected occupational decline," Labour Economics, Elsevier, vol. 81(C).
    18. Kopytov, Alexandr & Roussanov, Nikolai & Taschereau-Dumouchel, Mathieu, 2018. "Short-run pain, long-run gain? Recessions and technological transformation," Journal of Monetary Economics, Elsevier, vol. 97(C), pages 29-44.
    19. Clément Bosquet & Paul Maarek & Elliot Moiteaux, 2021. "Routine-biased technological change and wages by education level: Occupational downgrading and displacement effects," Working Papers hal-03270715, HAL.
    20. Consoli, Davide & Marin, Giovanni & Rentocchini, Francesco & Vona, Francesco, 2023. "Routinization, within-occupation task changes and long-run employment dynamics," Research Policy, Elsevier, vol. 52(1).

    More about this item

    Keywords

    Artificial intelligence; Employment; Occupations; Skills;
    All these keywords.

    JEL classification:

    • J23 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Labor Demand
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedmoi:99164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kate Hansel (email available below). General contact details of provider: https://edirc.repec.org/data/cfrbmus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.