IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.04924.html
   My bibliography  Save this paper

Follow the money: a startup-based measure of AI exposure across occupations, industries and regions

Author

Listed:
  • Enrico Maria Fenoaltea
  • Dario Mazzilli
  • Aurelio Patelli
  • Angelica Sbardella
  • Andrea Tacchella
  • Andrea Zaccaria
  • Marco Trombetti
  • Luciano Pietronero

Abstract

The integration of artificial intelligence (AI) into the workplace is advancing rapidly, necessitating robust metrics to evaluate its tangible impact on the labour market. Existing measures of AI occupational exposure largely focus on AI's theoretical potential to substitute or complement human labour on the basis of technical feasibility, providing limited insight into actual adoption and offering inadequate guidance for policymakers. To address this gap, we introduce the AI Startup Exposure (AISE) index-a novel metric based on occupational descriptions from O*NET and AI applications developed by startups funded by the Y Combinator accelerator. Our findings indicate that while high-skilled professions are theoretically highly exposed according to conventional metrics, they are heterogeneously targeted by startups. Roles involving routine organizational tasks-such as data analysis and office management-display significant exposure, while occupations involving tasks that are less amenable to AI automation due to ethical or high-stakes, more than feasibility, considerations -- such as judges or surgeons -- present lower AISE scores. By focusing on venture-backed AI applications, our approach offers a nuanced perspective on how AI is reshaping the labour market. It challenges the conventional assumption that high-skilled jobs uniformly face high AI risks, highlighting instead the role of today's AI players' societal desirability-driven and market-oriented choices as critical determinants of AI exposure. Contrary to fears of widespread job displacement, our findings suggest that AI adoption will be gradual and shaped by social factors as much as by the technical feasibility of AI applications. This framework provides a dynamic, forward-looking tool for policymakers and stakeholders to monitor AI's evolving impact and navigate the changing labour landscape.

Suggested Citation

  • Enrico Maria Fenoaltea & Dario Mazzilli & Aurelio Patelli & Angelica Sbardella & Andrea Tacchella & Andrea Zaccaria & Marco Trombetti & Luciano Pietronero, 2024. "Follow the money: a startup-based measure of AI exposure across occupations, industries and regions," Papers 2412.04924, arXiv.org, revised Dec 2024.
  • Handle: RePEc:arx:papers:2412.04924
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.04924
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daron Acemoglu & Pascual Restrepo, 2018. "The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment," American Economic Review, American Economic Association, vol. 108(6), pages 1488-1542, June.
    2. Edward W. Felten & Manav Raj & Robert Seamans, 2018. "A Method to Link Advances in Artificial Intelligence to Occupational Abilities," AEA Papers and Proceedings, American Economic Association, vol. 108, pages 54-57, May.
    3. Albanesi, Stefania & Da Silva, António Dias & Jimeno, Juan F. & Lamo, Ana & Wabitsch, Alena, 2023. "New technologies and jobs in Europe," Working Paper Series 2831, European Central Bank.
    4. David Autor & Anna Salomons, 2018. "Is Automation Labor-Displacing? Productivity Growth, Employment, and the Labor Share," NBER Working Papers 24871, National Bureau of Economic Research, Inc.
    5. David Autor, 2024. "Applying AI to Rebuild Middle Class Jobs," NBER Working Papers 32140, National Bureau of Economic Research, Inc.
    6. Jasmine Mondolo, 2022. "The composite link between technological change and employment: A survey of the literature," Journal of Economic Surveys, Wiley Blackwell, vol. 36(4), pages 1027-1068, September.
    7. Daron Acemoglu & David Autor & Jonathon Hazell & Pascual Restrepo, 2022. "Artificial Intelligence and Jobs: Evidence from Online Vacancies," Journal of Labor Economics, University of Chicago Press, vol. 40(S1), pages 293-340.
    8. Ed Felten & Manav Raj & Robert Seamans, 2023. "How will Language Modelers like ChatGPT Affect Occupations and Industries?," Papers 2303.01157, arXiv.org, revised Mar 2023.
    9. David Autor, 2022. "The Labor Market Impacts of Technological Change: From Unbridled Enthusiasm to Qualified Optimism to Vast Uncertainty," NBER Working Papers 30074, National Bureau of Economic Research, Inc.
    10. David H. Autor & Frank Levy & Richard J. Murnane, 2003. "The skill content of recent technological change: an empirical exploration," Proceedings, Federal Reserve Bank of San Francisco, issue Nov.
    11. Songul Tolan & Annarosa Pesole & Fernando Martinez-Plumed & Enrique Fernandez-Macias & José Hernandez-Orallo & Emilia Gomez, 2020. "Measuring the Occupational Impact of AI: Tasks, Cognitive Abilities and AI Benchmarks," JRC Working Papers on Labour, Education and Technology 2020-02, Joint Research Centre.
    12. Giovanni DOSI & Maria Enrica VIRGILLITO, 2019. "Whither the evolution of the contemporary social fabric? New technologies and old socio‐economic trends," International Labour Review, International Labour Organization, vol. 158(4), pages 593-625, December.
    13. Daron Acemoglu & Pascual Restrepo, 2020. "Robots and Jobs: Evidence from US Labor Markets," Journal of Political Economy, University of Chicago Press, vol. 128(6), pages 2188-2244.
    14. Edward Felten & Manav Raj & Robert Seamans, 2021. "Occupational, industry, and geographic exposure to artificial intelligence: A novel dataset and its potential uses," Strategic Management Journal, Wiley Blackwell, vol. 42(12), pages 2195-2217, December.
    15. Erik Brynjolfsson & Tom Mitchell & Daniel Rock, 2018. "What Can Machines Learn, and What Does It Mean for Occupations and the Economy?," AEA Papers and Proceedings, American Economic Association, vol. 108, pages 43-47, May.
    16. Gmyrek, Pawel, & Berg, Janine, & Bescond, David,, 2023. "Generative AI and jobs a global analysis of potential effects on job quantity and quality," ILO Working Papers 995324892702676, International Labour Organization.
    17. De Marzo, Giordano, & Mathew, Nanditha, & Sbardella, Angelica,, 2023. "Who creates jobs with broad skillsets? the crucial role of firms," ILO Working Papers 995271691902676, International Labour Organization.
    18. David Autor & Caroline Chin & Anna Salomons & Bryan Seegmiller, 2024. "New Frontiers: The Origins and Content of New Work, 1940–2018," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 139(3), pages 1399-1465.
    19. Dario Guarascio & Jelena Reljic & Roman Stollinger, 2023. "Artificial Intelligence and Employment: A Look into the Crystal Ball," LEM Papers Series 2023/34, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    20. Dosi, Giovanni & Marengo, Luigi, 2015. "The dynamics of organizational structures and performances under diverging distributions of knowledge and different power structures," Journal of Institutional Economics, Cambridge University Press, vol. 11(3), pages 535-559, September.
    21. Alexandre Georgieff & Raphaela Hyee, 2021. "Artificial intelligence and employment: New cross-country evidence," OECD Social, Employment and Migration Working Papers 265, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Albanesi, Stefania & Dias da Silva, Antonio & Jimeno, Juan Francisco & Lamo, Ana & Wabitsch, Alena, 2023. "New Technologies and Jobs in Europe," CEPR Discussion Papers 18220, C.E.P.R. Discussion Papers.
    2. David Marguerit, 2025. "Augmenting or Automating Labor? The Effect of AI Development on New Work, Employment, and Wages," Papers 2503.19159, arXiv.org.
    3. Dario Guarascio & Jelena Reljic & Roman Stollinger, 2023. "Artificial Intelligence and Employment: A Look into the Crystal Ball," LEM Papers Series 2023/34, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    4. Ekaterina Prytkova & Fabien Petit & Deyu Li & Sugat Chaturvedi & Tommaso Ciarli, 2024. "The Employment Impact of Emerging Digital Technologies," CEPEO Working Paper Series 24-01, UCL Centre for Education Policy and Equalising Opportunities, revised Feb 2024.
    5. Luca Fontanelli & Flavio Calvino & Chiara Criscuolo & Lionel Nesta & Elena Verdolini, 2024. "The role of human capital for AI adoption: Evidence from French firms," Post-Print hal-05029748, HAL.
    6. Harry Moroz & Mariana Viollaz, 2024. "The Future of Work in Central America and the Dominican Republic," World Bank Publications - Reports 42043, The World Bank Group.
    7. Fossen, Frank M. & McLemore, Trevor & Sorgner, Alina, 2024. "Artificial Intelligence and Entrepreneurship," IZA Discussion Papers 17055, Institute of Labor Economics (IZA).
    8. Jasmine Mondolo, 2022. "The composite link between technological change and employment: A survey of the literature," Journal of Economic Surveys, Wiley Blackwell, vol. 36(4), pages 1027-1068, September.
    9. Corrales‑Herrero, Helena & Rodriguez-Prado, Beatriz, 2022. "Mapping the Occupations of Recent Graduates. The Role of Academic Background in the Digital Era," MPRA Paper 123226, University Library of Munich, Germany, revised 06 Aug 2024.
    10. Tyna Eloundou & Sam Manning & Pamela Mishkin & Daniel Rock, 2023. "GPTs are GPTs: An Early Look at the Labor Market Impact Potential of Large Language Models," Papers 2303.10130, arXiv.org, revised Aug 2023.
    11. Gabriel Demombynes & Jorg Gero Langbein & Michael Weber, 2025. "The Exposure of Workers to Artificial Intelligence in Low- and Middle-Income Countries," Policy Research Working Paper Series 11057, The World Bank.
    12. Genz, Sabrina & Schnabel, Claus, 2021. "Digging into the digital divide: Workers' exposure to digitalization and its consequences for individual employment," Discussion Papers 118, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Labour and Regional Economics.
    13. Helena Corrales-Herrero & Beatriz Rodríguez-Prado, 2024. "Mapping the Occupations of Recent Graduates. The Role of Academic Background in the Digital Era," Research in Higher Education, Springer;Association for Institutional Research, vol. 65(8), pages 1853-1882, December.
    14. Cirillo, Valeria & Mina, Andrea & Ricci, Andrea, 2024. "Digital technologies, labor market flows and training: Evidence from Italian employer-employee data," Technological Forecasting and Social Change, Elsevier, vol. 209(C).
    15. Jin Liu & Xingchen Xu & Xi Nan & Yongjun Li & Yong Tan, 2023. ""Generate" the Future of Work through AI: Empirical Evidence from Online Labor Markets," Papers 2308.05201, arXiv.org, revised Jun 2024.
    16. Pelin Ozgul & Marie-Christine Fregin & Michael Stops & Simon Janssen & Mark Levels, 2024. "High-skilled Human Workers in Non-Routine Jobs are Susceptible to AI Automation but Wage Benefits Differ between Occupations," Papers 2404.06472, arXiv.org.
    17. Pablo Casas & Concepción Román, 2024. "The impact of artificial intelligence in the early retirement decision," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 51(3), pages 583-618, August.
    18. Borsato, Andrea & Lorentz, André, 2023. "The Kaldor–Verdoorn law at the age of robots and AI," Research Policy, Elsevier, vol. 52(10).
    19. Erdem Dogukan Yilmaz & Christian Peukert, 2024. "Who Benefits from AI? Project-Level Evidence on Labor Demand, Operations and Profitability," CESifo Working Paper Series 11321, CESifo.
    20. Fabio Montobbio & Jacopo Staccioli & Maria Enrica Virgillito & Marco Vivarelli, 2021. "Labour-saving automation and occupational exposure: a text-similarity measure," DISCE - Working Papers del Dipartimento di Politica Economica dipe0021, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.04924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.