IDEAS home Printed from https://ideas.repec.org/p/eth/wpswif/21-362.html
   My bibliography  Save this paper

Green Technology Policies versus Carbon Pricing: An Intergenerational Perspective

Author

Listed:
  • Sebastian Rausch

    (ZEW Leibniz Centre for European Economic Research, Mannheim, Germany, Department of Economics, Heidelberg University, Germany, Centre for Energy Policy and Economics at ETH Zurich, Switzerland, and Joint Program on the Science and Policy of Global Change at Massachusetts Institute of Technology, Cambridge, USA)

  • Hidemichi Yonezawa

    (Division for Energy and Environmental Economics at the Research Department at Statistics Norway)

Abstract

Technology policy is the most widespread form of climate policy and is often preferred over seemingly efficient carbon pricing. We propose a new explanation for this observation: gains that predominantly accrue to households with large capital assets and that influence majority decisions in favor of technology policy. We study climate policy choices in an overlapping generations model with heterogeneous energy technologies and distortionary income taxation. Compared to carbon pricing, green technology policy leads to a pronounced capital subsidy effect that benefits most of the current generations but burdens future generations. Based on majority voting which disregards future generations, green technology policies are favored over a carbon tax. Smart “polluter-pays” financing of green technology policies enables obtaining the support of current generations while realizing efficiency gains for future generations.

Suggested Citation

  • Sebastian Rausch & Hidemichi Yonezawa, 2021. "Green Technology Policies versus Carbon Pricing: An Intergenerational Perspective," CER-ETH Economics working paper series 21/362, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
  • Handle: RePEc:eth:wpswif:21-362
    as

    Download full text from publisher

    File URL: https://www.ethz.ch/content/dam/ethz/special-interest/mtec/cer-eth/cer-eth-dam/documents/working-papers/WP-21-362.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Laurence Kotlikoff & Felix Kubler & Andrey Polbin & Jeffrey Sachs & Simon Scheidegger, 2021. "Making Carbon Taxation A Generational Win Win," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(1), pages 3-46, February.
    2. Sebastian Rausch & Hidemichi Yonezawa, 2018. "The Intergenerational Incidence Of Green Tax Reform," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-25, February.
    3. Bovenberg, A Lans & Goulder, Lawrence H, 1996. "Optimal Environmental Taxation in the Presence of Other Taxes: General-Equilibrium Analyses," American Economic Review, American Economic Association, vol. 86(4), pages 985-1000, September.
    4. Phaneuf,Daniel J. & Requate,Till, 2017. "A Course in Environmental Economics," Cambridge Books, Cambridge University Press, number 9781107004177.
    5. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    6. Goulder, Lawrence H. & Parry, Ian W. H. & Williams III, Roberton C. & Burtraw, Dallas, 1999. "The cost-effectiveness of alternative instruments for environmental protection in a second-best setting," Journal of Public Economics, Elsevier, vol. 72(3), pages 329-360, June.
    7. Rutherford, Thomas F, 1999. "Applied General Equilibrium Modeling with MPSGE as a GAMS Subsystem: An Overview of the Modeling Framework and Syntax," Computational Economics, Springer;Society for Computational Economics, vol. 14(1-2), pages 1-46, October.
    8. Jonas Meckling & Thomas Sterner & Gernot Wagner, 2017. "Policy sequencing toward decarbonization," Nature Energy, Nature, vol. 2(12), pages 918-922, December.
    9. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2005. "A tale of two market failures: Technology and environmental policy," Ecological Economics, Elsevier, vol. 54(2-3), pages 164-174, August.
    10. Sebastian Rausch and Valerie J. Karplus, 2014. "Markets versus Regulation: The Efficiency and Distributional Impacts of U.S. Climate Policy Proposals," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    11. A. Bovenberg & Ben Heijdra, 2002. "Environmental Abatement and Intergenerational Distribution," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 23(1), pages 45-84, September.
    12. Rutherford, Thomas F., 1995. "Extension of GAMS for complementarity problems arising in applied economic analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 19(8), pages 1299-1324, November.
    13. Rausch, Sebastian, 2013. "Fiscal consolidation and climate policy: An overlapping generations perspective," Energy Economics, Elsevier, vol. 40(S1), pages 134-148.
    14. Lau, Morten I. & Pahlke, Andreas & Rutherford, Thomas F., 2002. "Approximating infinite-horizon models in a complementarity format: A primer in dynamic general equilibrium analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 26(4), pages 577-609, April.
    15. Stephie Fried & Kevin Novan & William Peterman, 2018. "The Distributional Effects of a Carbon Tax on Current and Future Generations," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 30, pages 30-46, October.
    16. Jaffe, Adam B. & Stavins, Robert N., 1994. "The energy paradox and the diffusion of conservation technology," Resource and Energy Economics, Elsevier, vol. 16(2), pages 91-122, May.
    17. Lawrence H. Goulder & Ian W. H. Parry, 2008. "Instrument Choice in Environmental Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 2(2), pages 152-174, Summer.
    18. Stephen P. Holland & Jonathan E. Hughes & Christopher R. Knittel, 2009. "Greenhouse Gas Reductions under Low Carbon Fuel Standards?," American Economic Journal: Economic Policy, American Economic Association, vol. 1(1), pages 106-146, February.
    19. Abrell, Jan & Kosch, Mirjam & Rausch, Sebastian, 2019. "Carbon abatement with renewables: Evaluating wind and solar subsidies in Germany and Spain," Journal of Public Economics, Elsevier, vol. 169(C), pages 172-202.
    20. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    21. Paul L. Joskow, 2011. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," American Economic Review, American Economic Association, vol. 101(3), pages 238-241, May.
    22. Bovenberg, A.L. & Goulder, L.H., 1996. "Optimal environmental taxation in the presence of other taxes : General equilibrium analyses," Other publications TiSEM 5d4b7517-c5c8-4ef6-ab76-3, Tilburg University, School of Economics and Management.
    23. Rasmussen, Tobias N. & Rutherford, Thomas F., 2004. "Modeling overlapping generations in a complementarity format," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1383-1409, April.
    24. Florian Landis, Sebastian Rausch, Mirjam Kosch, and Christoph Böhringer, 2019. "Efficient and Equitable Policy Design: Taxing Energy Use or Promoting Energy Savings?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    25. Auerbach, Alan J & Kotlikoff, Laurence J, 1987. "Evaluating Fiscal Policy with a Dynamic Simulation Model," American Economic Review, American Economic Association, vol. 77(2), pages 49-55, May.
    26. Baumol,William J. & Oates,Wallace E., 1988. "The Theory of Environmental Policy," Cambridge Books, Cambridge University Press, number 9780521322249, October.
    27. Phaneuf,Daniel J. & Requate,Till, 2017. "A Course in Environmental Economics," Cambridge Books, Cambridge University Press, number 9780521178693.
    28. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    29. Lint Barrage, 2020. "Optimal Dynamic Carbon Taxes in a Climate–Economy Model with Distortionary Fiscal Policy," Review of Economic Studies, Oxford University Press, vol. 87(1), pages 1-39.
    Full references (including those not matched with items on IDEAS)

    Citations

    Blog mentions

    As found by EconAcademics.org, the blog aggregator for Economics research:
    1. Green technology policies versus carbon pricing. An intergenerational perspective
      by Christian Zimmermann in NEP-DGE blog on 2021-11-22 19:22:32

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rausch, Sebastian & Mowers, Matthew, 2014. "Distributional and efficiency impacts of clean and renewable energy standards for electricity," Resource and Energy Economics, Elsevier, vol. 36(2), pages 556-585.
    2. Rausch, Sebastian & Abrell, Jan, 2014. "Optimal Dynamic Carbon Taxation in a Life-Cycle Model with Distortionary Fiscal Policy," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100513, Verein für Socialpolitik / German Economic Association.
    3. Sebastian Rausch and Valerie J. Karplus, 2014. "Markets versus Regulation: The Efficiency and Distributional Impacts of U.S. Climate Policy Proposals," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    4. Rausch, Sebastian, 2013. "Fiscal consolidation and climate policy: An overlapping generations perspective," Energy Economics, Elsevier, vol. 40(S1), pages 134-148.
    5. Sebastian Rausch & Hidemichi Yonezawa, 2018. "The Intergenerational Incidence Of Green Tax Reform," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-25, February.
    6. Bretschger, Lucas & Lechthaler, Filippo & Rausch, Sebastian & Zhang, Lin, 2017. "Knowledge diffusion, endogenous growth, and the costs of global climate policy," European Economic Review, Elsevier, vol. 93(C), pages 47-72.
    7. Mathieu-Bolh, Nathalie, 2017. "Can tax reforms help achieve sustainable development?," Resource and Energy Economics, Elsevier, vol. 50(C), pages 135-163.
    8. Fullerton, Don & Ta, Chi L., 2019. "Environmental policy on the back of an envelope: A Cobb-Douglas model is not just a teaching tool," Energy Economics, Elsevier, vol. 84(S1).
    9. Robert N. Stavins, 2011. "The Problem of the Commons: Still Unsettled after 100 Years," American Economic Review, American Economic Association, vol. 101(1), pages 81-108, February.
    10. Laurence Kotlikoff & Felix Kubler & Andrey Polbin & Jeffrey Sachs & Simon Scheidegger, 2021. "Making Carbon Taxation A Generational Win Win," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(1), pages 3-46, February.
    11. Abrell, Jan & Rausch, Sebastian & Streitberger, Clemens, 2019. "The economics of renewable energy support," Journal of Public Economics, Elsevier, vol. 176(C), pages 94-117.
    12. Florian Landis & Sebastian Rausch & Mirjam Kosch, 2018. "Differentiated Carbon Prices and the Economic Cost of Decarbonization," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(2), pages 483-516, June.
    13. Mr. Dirk Heine & Mr. John Norregaard & Ian W.H. Parry, 2012. "Environmental Tax Reform: Principles from Theory and Practice to Date," IMF Working Papers 2012/180, International Monetary Fund.
    14. Alfredo Marvão Pereira & Rui M. Pereira, 2012. "DGEP - A Dynamic General Equilibrium Model of the Portuguese Economy: Model Documentation," Working Papers 127, Department of Economics, College of William and Mary.
    15. David A. Keiser & Joseph S. Shapiro, 2019. "US Water Pollution Regulation over the Past Half Century: Burning Waters to Crystal Springs?," Journal of Economic Perspectives, American Economic Association, vol. 33(4), pages 51-75, Fall.
    16. Aalbers, Rob & Shestalova, Victoria & Kocsis, Viktória, 2013. "Innovation policy for directing technical change in the power sector," Energy Policy, Elsevier, vol. 63(C), pages 1240-1250.
    17. Elizabeth Baldwin, Yongyang Cai, Karlygash Kuralbayeva, 2018. "To build or not to build? Capital stocks and climate policy," GRI Working Papers 290, Grantham Research Institute on Climate Change and the Environment.
    18. Mathias Reynaert, 2021. "Abatement strategies and the cost of environmental regulation: emission standards on the European car market," Post-Print hal-03369684, HAL.
    19. van den Bijgaart, Inge, 2017. "The unilateral implementation of a sustainable growth path with directed technical change," European Economic Review, Elsevier, vol. 91(C), pages 305-327.
    20. Cameron Hepburn & Jacquelyn Pless & David Popp, 2018. "Policy Brief—Encouraging Innovation that Protects Environmental Systems: Five Policy Proposals," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 154-169.

    More about this item

    Keywords

    Climate Policy; Green Technology Policy; Carbon Pricing; Overlapping Generations; Intergenerational Distribution; Social Welfare; General Equilibrium;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy
    • D58 - Microeconomics - - General Equilibrium and Disequilibrium - - - Computable and Other Applied General Equilibrium Models
    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eth:wpswif:21-362. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/iwethch.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: https://edirc.repec.org/data/iwethch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.