IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt2nt1r1x1.html
   My bibliography  Save this paper

Automobiles on Steroids: Product Attribute Trade-O�s and Technological Progress in the Automobile Sector

Author

Listed:
  • Knittel, Christopher R.

Abstract

New car fleet fuel economy, weight and engine power have changed drastically since 1980. These changes represent both movements along and shifts in the "fuel economy/weight/engine power production possibilities frontier." This paper estimates the technological progress that has occurred since 1980 and the trade-offs that manufacturers and consumers face when choosing between fuel economy, weight and engine power characteristics. The results suggest that if weight, horsepower and torque were held at their 1980 levels, fuel economy for both passenger cars and light trucks could have increased by nearly 50 percent from 1980 to 2006; this is in stark contrast to the 15 percent by which fuel economy actually increased. I also find that once technological progress is considered, meeting the CAFE standards adopted in 2007 will require halting the observed increases in weight and engine power characteristics, but little more; in contrast, the standards recently announced by the new administration, while certainly attainable, require non-trivial "downsizing." I also investigate the relative efficiencies of manufacturers. I find that US manufacturers tend to be above the median in terms of their passenger vehicle fuel efficiency conditional on weight and engine power, and are among the top for light duty trucks; Honda is the most efficient manufacturer for both passenger cars, while Volvo is the most efficient manufacturer of light duty trucks. However, I also find that over time, U.S. manufacturers' relative efficiency in both passenger cars and light trucks has degraded. These results may provide insight into their current financial troubles.

Suggested Citation

  • Knittel, Christopher R., 2009. "Automobiles on Steroids: Product Attribute Trade-O�s and Technological Progress in the Automobile Sector," Institute of Transportation Studies, Working Paper Series qt2nt1r1x1, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt2nt1r1x1
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/2nt1r1x1.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francisco Requena‐Silvente & James Walker, 2006. "Calculating Hedonic Price Indices with Unobserved Product Attributes: An Application to the UK Car Market," Economica, London School of Economics and Political Science, vol. 73(291), pages 509-532, August.
    2. Goldberg, Pinelopi Koujianou, 1995. "Product Differentiation and Oligopoly in International Markets: The Case of the U.S. Automobile Industry," Econometrica, Econometric Society, vol. 63(4), pages 891-951, July.
    3. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    4. Alberto Abadie & Guido W. Imbens, 2002. "Simple and Bias-Corrected Matching Estimators for Average Treatment Effects," NBER Technical Working Papers 0283, National Bureau of Economic Research, Inc.
    5. Richard G. Newell & Adam B. Jaffe & Robert N. Stavins, 1999. "The Induced Innovation Hypothesis and Energy-Saving Technological Change," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(3), pages 941-975.
    6. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    7. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Jihu & Zhou, Yan & Yu, Rujie & Zhao, Dongchang & Lu, Zifeng & Zhang, Peng, 2019. "Survival rate of China passenger vehicles: A data-driven approach," Energy Policy, Elsevier, vol. 129(C), pages 587-597.
    2. Thomas Klier & Joshua Linn, 2011. "Corporate Average Fuel Economy Standards and the Market for New Vehicles," Annual Review of Resource Economics, Annual Reviews, vol. 3(1), pages 445-462, October.
    3. Lutsey, Nicholas, 2010. "Review of Technical Literature and Trends Related to Automobile Mass-Reduction Technology," Institute of Transportation Studies, Working Paper Series qt85p4x0jn, Institute of Transportation Studies, UC Davis.
    4. Soren T. Anderson & Ian W. H. Parry & James M. Sallee & Carolyn Fischer, 2011. "Automobile Fuel Economy Standards: Impacts, Efficiency, and Alternatives," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(1), pages 89-108, Winter.
    5. Sallee, James M. & Slemrod, Joel, 2012. "Car notches: Strategic automaker responses to fuel economy policy," Journal of Public Economics, Elsevier, vol. 96(11), pages 981-999.
    6. Lawrence Goulder & Mark Jacobsen & Arthur van Benthem, "undated". "Unintended Consequences from Nested State & Federal Regulations: The Case of the Pavley Greenhouse-Gas-per-Mile Limits," Discussion Papers 08-049, Stanford Institute for Economic Policy Research.
    7. Karplus, Valerie J. & Paltsev, Sergey & Babiker, Mustafa & Reilly, John M., 2013. "Applying engineering and fleet detail to represent passenger vehicle transport in a computable general equilibrium model," Economic Modelling, Elsevier, vol. 30(C), pages 295-305.
    8. Valerie A. Ramey & Daniel J. Vine, 2011. "Oil, Automobiles, and the US Economy: How Much Have Things Really Changed?," NBER Chapters, in: NBER Macroeconomics Annual 2010, volume 25, pages 333-367, National Bureau of Economic Research, Inc.
    9. Ioannis Bellos & Mark Ferguson & L. Beril Toktay, 2017. "The Car Sharing Economy: Interaction of Business Model Choice and Product Line Design," Manufacturing & Service Operations Management, INFORMS, vol. 19(2), pages 185-201, May.
    10. Lutsey, Nicholas P., 2010. "Review of technical literature and trends related to automobile mass-reduction technology," Institute of Transportation Studies, Working Paper Series qt9t04t94w, Institute of Transportation Studies, UC Davis.
    11. Goulder, Lawrence H. & Jacobsen, Mark R. & van Benthem, Arthur A., 2012. "Unintended consequences from nested state and federal regulations: The case of the Pavley greenhouse-gas-per-mile limits," Journal of Environmental Economics and Management, Elsevier, vol. 63(2), pages 187-207.
    12. Michel Freyssenet & Bruno Jetin, 2019. "The deregulation of employment and finance: the Big Three in crisis," CEPN Working Papers halshs-02020051, HAL.
    13. Lawrence H. Goulder & Mark R. Jacobsen & Arthur A. van Benthem, 2009. "Unintended Consequences from Nested State & Federal Regulations: The Case of the Pavley Greenhouse-Gas-per-Mile Limits," NBER Working Papers 15337, National Bureau of Economic Research, Inc.
    14. Yu, Rujie & Ren, Huanhuan & Liu, Yong & Yu, Biying, 2021. "Gap between on-road and official fuel efficiency of passenger vehicles in China," Energy Policy, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher R. Knittel, 2011. "Automobiles on Steroids: Product Attribute Trade-Offs and Technological Progress in the Automobile Sector," American Economic Review, American Economic Association, vol. 101(7), pages 3368-3399, December.
    2. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    3. Thomas Klier & Joshua Linn & Yichen C. Zhou, 2020. "The effects of fuel prices and vehicle sales on fuel‐saving technology adoption in passenger vehicles," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 29(3), pages 543-578, July.
    4. Ai, Chunrong & Linton, Oliver & Zhang, Zheng, 2022. "Estimation and inference for the counterfactual distribution and quantile functions in continuous treatment models," Journal of Econometrics, Elsevier, vol. 228(1), pages 39-61.
    5. Li, Shanjun & Kahn, Matthew E. & Nickelsburg, Jerry, 2015. "Public transit bus procurement: The role of energy prices, regulation and federal subsidies," Journal of Urban Economics, Elsevier, vol. 87(C), pages 57-71.
    6. Huse, Cristian & Lucinda, Claudio & Ribeiro, Andre, 2021. "Assessing the effects of a large temporary energy savings program: Evidence from a developing country," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    7. Konishi, Yoshifumi & Managi, Shunsuke, 2020. "Do regulatory loopholes distort technical change? Evidence from new vehicle launches under the Japanese fuel economy regulation," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    8. Antonio Moreno & Christian Terwiesch, 2015. "Pricing and Production Flexibility: An Empirical Analysis of the U.S. Automotive Industry," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 428-444, October.
    9. Carrión-Flores, Carmen E. & Innes, Robert, 2010. "Environmental innovation and environmental performance," Journal of Environmental Economics and Management, Elsevier, vol. 59(1), pages 27-42, January.
    10. Tovar, Jorge, 2012. "Consumers’ Welfare and Trade Liberalization: Evidence from the Car Industry in Colombia," World Development, Elsevier, vol. 40(4), pages 808-820.
    11. Pereira, Pedro & Ribeiro, Tiago, 2011. "The impact on broadband access to the Internet of the dual ownership of telephone and cable networks," International Journal of Industrial Organization, Elsevier, vol. 29(2), pages 283-293, March.
    12. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    13. de la Croix, David & Gosseries, Axel, 2012. "The natalist bias of pollution control," Journal of Environmental Economics and Management, Elsevier, vol. 63(2), pages 271-287.
    14. Francesco Vona & Francesco Nicolli & Lionel Nesta, 2012. "Determinants of renewable energy innovation: environmental policies vs. market regulation," Sciences Po publications 2012-05, Sciences Po.
    15. Hosan, Shahadat & Rahman, Md Matiar & Karmaker, Shamal Chandra & Saha, Bidyut Baran, 2023. "Energy subsidies and energy technology innovation: Policies for polygeneration systems diffusion," Energy, Elsevier, vol. 267(C).
    16. Aamir Rafique Hashmi & Johannes Van Biesebroeck, 2016. "The Relationship between Market Structure and Innovation in Industry Equilibrium: A Case Study of the Global Automobile Industry," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 192-208, March.
    17. Zhangsheng Liu & Liuqingqing Yang & Liqin Fan, 2021. "Induced Effect of Environmental Regulation on Green Innovation: Evidence from the Increasing-Block Pricing Scheme," IJERPH, MDPI, vol. 18(5), pages 1-15, March.
    18. Gans, Joshua S. & Hill, Robert J., 1997. "Measuring product diversity," Economics Letters, Elsevier, vol. 55(1), pages 145-150, August.
    19. Banzhaf, H. Spencer & Kasim, M. Taha, 2019. "Fuel consumption and gasoline prices: The role of assortative matching between households and automobiles," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 1-25.
    20. George Alessandria & Joseph P. Kaboski, 2011. "Pricing-to-Market and the Failure of Absolute PPP," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(1), pages 91-127, January.

    More about this item

    Keywords

    UCD-ITS-RR-09-16; Engineering;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt2nt1r1x1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.