IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.12276.html
   My bibliography  Save this paper

Forecasting Climate Policy Uncertainty: Evidence from the United States

Author

Listed:
  • Donia Besher
  • Anirban Sengupta
  • Tanujit Chakraborty

Abstract

Forecasting Climate Policy Uncertainty (CPU) is essential as policymakers strive to balance economic growth with environmental goals. High levels of CPU can slow down investments in green technologies, make regulatory planning more difficult, and increase public resistance to climate reforms, especially during times of economic stress. This study addresses the challenge of forecasting the US CPU index by building the Bayesian Structural Time Series (BSTS) model with a large set of covariates, including economic indicators, financial cycle data, and public sentiments captured through Google Trends. The key strength of the BSTS model lies in its ability to efficiently manage a large number of covariates through its dynamic feature selection mechanism based on the spike-and-slab prior. To validate the effectiveness of the selected features of the BSTS model, an impulse response analysis is performed. The results show that macro-financial shocks impact CPU in different ways over time. Numerical experiments are performed to evaluate the performance of the BSTS model with exogenous variables on the US CPU dataset over different forecasting horizons. The empirical results confirm that BSTS consistently outperforms classical and deep learning frameworks, particularly for semi-long-term and long-term forecasts.

Suggested Citation

  • Donia Besher & Anirban Sengupta & Tanujit Chakraborty, 2025. "Forecasting Climate Policy Uncertainty: Evidence from the United States," Papers 2507.12276, arXiv.org.
  • Handle: RePEc:arx:papers:2507.12276
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.12276
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.12276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.