Author
Listed:
- Tanujit Chakraborty
- Donia Besher
- Madhurima Panja
- Shovon Sengupta
Abstract
Accurate forecasting of exchange rates remains a persistent challenge, particularly for emerging economies such as Brazil, Russia, India, and China (BRIC). These series exhibit long memory, nonlinearity, and non-stationarity properties that conventional time series models struggle to capture. Additionally, there exist several key drivers of exchange rate dynamics, including global economic policy uncertainty, US equity market volatility, US monetary policy uncertainty, oil price growth rates, and country-specific short-term interest rate differentials. These empirical complexities underscore the need for a flexible modeling framework that can jointly accommodate long memory, nonlinearity, and the influence of external drivers. To address these challenges, we propose a Neural AutoRegressive Fractionally Integrated Moving Average (NARFIMA) model that combines the long-memory representation of ARFIMA with the nonlinear learning capacity of neural networks, while flexibly incorporating exogenous causal variables. We establish theoretical properties of the model, including asymptotic stationarity of the NARFIMA process using Markov chains and nonlinear time series techniques. We quantify forecast uncertainty using conformal prediction intervals within the NARFIMA framework. Empirical results across six forecast horizons show that NARFIMA consistently outperforms various state-of-the-art statistical and machine learning models in forecasting BRIC exchange rates. These findings provide new insights for policymakers and market participants navigating volatile financial conditions. The \texttt{narfima} \textbf{R} package provides an implementation of our approach.
Suggested Citation
Tanujit Chakraborty & Donia Besher & Madhurima Panja & Shovon Sengupta, 2025.
"Neural ARFIMA model for forecasting BRIC exchange rates with long memory under oil shocks and policy uncertainties,"
Papers
2509.06697, arXiv.org.
Handle:
RePEc:arx:papers:2509.06697
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.06697. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.