IDEAS home Printed from https://ideas.repec.org/a/wly/natres/v49y2025i2p1478-1535.html
   My bibliography  Save this article

Renewable energy and technology adoption: Mitigating CO2 emissions through implementation strategies

Author

Listed:
  • Faik Bilgili
  • Seyit Önderol
  • Sevda Kuşkaya
  • Mohammed Alnour
  • Mohammad Enamul Hoque
  • Daniel Balsalobre‐Lorente

Abstract

An increase in the combustion of fossil fuels as a means of generating energy has resulted in adverse ecological ramifications. Therefore, to achieve environmental sustainability goals, it is essential to focus on reducing carbon emissions by conserving natural resources and adopting low‐carbon technologies. Renewable electricity generation, the advancement of environment‐related technologies, and the widespread adoption of these technologies have the potential to reduce carbon emissions and drive the shift towards a more sustainable future. Nevertheless, the impact of these initiatives in the European Union (EU) on promoting these solutions and reducing emissions is still ambiguous. Therefore, this paper aims to explore how renewable electricity generation, development of environment‐related technologies, and diffusion of environment‐related technologies limit CO2 emission in 14 selected EU countries. To achieve this goal, our study span covered the period of 1990–2019 and employed Panel Vector Autoregressive (PVAR) based impulse function to capture responses to CO2. The empirical results reveal that CO2 is positively influenced by economic growth and electricity consumption. The empirical findings indicate that renewable electricity generation, development of environment‐related technologies, and diffusion of environment‐related technologies have negative impacts on CO2 levels, implying that they could mitigate CO2 levels in 14 EU countries. The above empirical findings suggest that EU countries should invest more in the R&D, diffusion, and implementation of climate‐related technological advances in renewable energy generation. Policymakers should take action to develop market‐based environmental regulatory measures, cut fossil fuel subsidies, and boost renewable energy and climate change advances. To attain environmental sustainability and lower carbon dioxide emissions, it is crucial to implement such policies.

Suggested Citation

  • Faik Bilgili & Seyit Önderol & Sevda Kuşkaya & Mohammed Alnour & Mohammad Enamul Hoque & Daniel Balsalobre‐Lorente, 2025. "Renewable energy and technology adoption: Mitigating CO2 emissions through implementation strategies," Natural Resources Forum, Blackwell Publishing, vol. 49(2), pages 1478-1535, May.
  • Handle: RePEc:wly:natres:v:49:y:2025:i:2:p:1478-1535
    DOI: 10.1111/1477-8947.12441
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1477-8947.12441
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1477-8947.12441?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Antoine Dechezleprêtre & Matthieu Glachant & Yann Ménière, 2013. "What Drives the International Transfer of Climate Change Mitigation Technologies? Empirical Evidence from Patent Data," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(2), pages 161-178, February.
    2. Ma, Qiang & Murshed, Muntasir & Khan, Zeeshan, 2021. "The nexuses between energy investments, technological innovations, emission taxes, and carbon emissions in China," Energy Policy, Elsevier, vol. 155(C).
    3. Antonietti, Roberto & Mondolo, Jasmine, 2023. "Inward FDI and the quality of domestic institutions: A cross-country panel VAR analysis," Economic Systems, Elsevier, vol. 47(3).
    4. Grossmann, Axel & Love, Inessa & Orlov, Alexei G., 2014. "The dynamics of exchange rate volatility: A panel VAR approach," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 33(C), pages 1-27.
    5. Antonakakis, Nikolaos & Cunado, Juncal & Filis, George & Gracia, Fernando Perez de, 2017. "Oil dependence, quality of political institutions and economic growth: A panel VAR approach," Resources Policy, Elsevier, vol. 53(C), pages 147-163.
    6. Álvarez-Herránz, Agustín & Balsalobre, Daniel & Cantos, José María & Shahbaz, Muhammad, 2017. "Energy Innovations-GHG Emissions Nexus: Fresh Empirical Evidence from OECD Countries," Energy Policy, Elsevier, vol. 101(C), pages 90-100.
    7. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 239-253.
    8. Holtz-Eakin, Douglas & Newey, Whitney & Rosen, Harvey S, 1988. "Estimating Vector Autoregressions with Panel Data," Econometrica, Econometric Society, vol. 56(6), pages 1371-1395, November.
    9. Fang, Zhen, 2023. "Assessing the impact of renewable energy investment, green technology innovation, and industrialization on sustainable development: A case study of China," Renewable Energy, Elsevier, vol. 205(C), pages 772-782.
    10. Korobilis, Dimitris, 2016. "Prior selection for panel vector autoregressions," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 110-120.
    11. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    12. Jushan Bai & Serena Ng, 2004. "A PANIC Attack on Unit Roots and Cointegration," Econometrica, Econometric Society, vol. 72(4), pages 1127-1177, July.
    13. Wang, Zhaohua & Yang, Zhongmin & Zhang, Yixiang & Yin, Jianhua, 2012. "Energy technology patents–CO2 emissions nexus: An empirical analysis from China," Energy Policy, Elsevier, vol. 42(C), pages 248-260.
    14. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    15. Michael R. M. Abrigo & Inessa Love, 2016. "Estimation of panel vector autoregression in Stata," Stata Journal, StataCorp LLC, vol. 16(3), pages 778-804, September.
    16. Muhammad Yousaf Raza & Yingchao Chen & Songlin Tang, 2022. "Assessing the Green R&D Investment and Patent Generation in Pakistan towards CO 2 Emissions Reduction with a Novel Decomposition Framework," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    17. Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Roubaud, David & Farhani, Sahbi, 2018. "How economic growth, renewable electricity and natural resources contribute to CO2 emissions?," Energy Policy, Elsevier, vol. 113(C), pages 356-367.
    18. Shahbaz, Muhammad & Raghutla, Chandrashekar & Song, Malin & Zameer, Hashim & Jiao, Zhilun, 2020. "Public-private partnerships investment in energy as new determinant of CO2 emissions: The role of technological innovations in China," Energy Economics, Elsevier, vol. 86(C).
    19. Liguo, Xin & Ahmad, Manzoor & Khan, Shehzad & Haq, Zahoor Ul & Khattak, Shoukat Iqbal, 2023. "Evaluating the role of innovation in hybrid electric vehicle-related technologies to promote environmental sustainability in knowledge-based economies," Technology in Society, Elsevier, vol. 74(C).
    20. Danish, & Ulucak, Recep & Baloch, Muhammad Awais, 2023. "An empirical approach to the nexus between natural resources and environmental pollution: Do economic policy and environmental-related technologies make any difference?," Resources Policy, Elsevier, vol. 81(C).
    21. Yu, Jinna & Tang, Yuk Ming & Chau, Ka Yin & Nazar, Raima & Ali, Sajid & Iqbal, Wasim, 2022. "Role of solar-based renewable energy in mitigating CO2 emissions: Evidence from quantile-on-quantile estimation," Renewable Energy, Elsevier, vol. 182(C), pages 216-226.
    22. Matos, Stelvia & Viardot, Eric & Sovacool, Benjamin K. & Geels, Frank W. & Xiong, Yu, 2022. "Innovation and climate change: A review and introduction to the special issue," Technovation, Elsevier, vol. 117(C).
    23. Henriques, Sofia Teives & Borowiecki, Karol J., 2017. "The drivers of long-run CO2 emissions in Europe, North America and Japan since 1800," Energy Policy, Elsevier, vol. 101(C), pages 537-549.
    24. Michael R.M. Abrigo & Inessa Love, 2016. "Estimation of Panel Vector Autoregression in Stata: a Package of Programs," Working Papers 201602, University of Hawaii at Manoa, Department of Economics.
    25. Alataş, Sedat, 2022. "Do environmental technologies help to reduce transport sector CO2 emissions? Evidence from the EU15 countries," Research in Transportation Economics, Elsevier, vol. 91(C).
    26. Emad Kazemzadeh & José Alberto Fuinhas & Matheus Koengkan, 2022. "The impact of income inequality and economic complexity on ecological footprint: an analysis covering a long-time span," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 11(2), pages 133-153, April.
    27. Su, Hsin-Ning & Moaniba, Igam M., 2017. "Does innovation respond to climate change? Empirical evidence from patents and greenhouse gas emissions," Technological Forecasting and Social Change, Elsevier, vol. 122(C), pages 49-62.
    28. Saba, Charles Shaaba, 2023. "Nexus between CO2 emissions, renewable energy consumption, militarisation, and economic growth in South Africa: Evidence from using novel dynamic ARDL simulations," Renewable Energy, Elsevier, vol. 205(C), pages 349-365.
    29. van der Werf, Edwin & Di Maria, Corrado, 2012. "Imperfect Environmental Policy and Polluting Emissions: The Green Paradox and Beyond," International Review of Environmental and Resource Economics, now publishers, vol. 6(2), pages 153-194, March.
    30. Swarup Santra, 2017. "The effect of technological innovation on production-based energy and CO2 emission productivity: Evidence from BRICS countries," African Journal of Science, Technology, Innovation and Development, Taylor & Francis Journals, vol. 9(5), pages 503-512, September.
    31. Lei Jin & Keran Duan & Chunming Shi & Xianwei Ju, 2017. "The Impact of Technological Progress in the Energy Sector on Carbon Emissions: An Empirical Analysis from China," IJERPH, MDPI, vol. 14(12), pages 1-14, December.
    32. Mowery, David C. & Nelson, Richard R. & Martin, Ben R., 2010. "Technology policy and global warming: Why new policy models are needed (or why putting new wine in old bottles won't work)," Research Policy, Elsevier, vol. 39(8), pages 1011-1023, October.
    33. Ferreira, João J.M. & Fernandes, Cristina I. & Ferreira, Fernando A.F., 2020. "Technology transfer, climate change mitigation, and environmental patent impact on sustainability and economic growth: A comparison of European countries," Technological Forecasting and Social Change, Elsevier, vol. 150(C).
    34. Font Vivanco, David & McDowall, Will & Freire-González, Jaume & Kemp, René & van der Voet, Ester, 2016. "The foundations of the environmental rebound effect and its contribution towards a general framework," Ecological Economics, Elsevier, vol. 125(C), pages 60-69.
    35. Al-Orabi, Ahmed M. & Osman, Mohamed G. & Sedhom, Bishoy E., 2023. "Analysis of the economic and technological viability of producing green hydrogen with renewable energy sources in a variety of climates to reduce CO2 emissions: A case study in Egypt," Applied Energy, Elsevier, vol. 338(C).
    36. Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2021. "A machine learning approach on the relationship among solar and wind energy production, coal consumption, GDP, and CO2 emissions," Renewable Energy, Elsevier, vol. 167(C), pages 99-115.
    37. Zhang, Jiangshan & Lin Lawell, C.-Y. Cynthia, 2017. "The macroeconomic rebound effect in China," Energy Economics, Elsevier, vol. 67(C), pages 202-212.
    38. Tolassa Temesgen Hordofa & Hieu Minh Vu & Apichit Maneengam & Eko Priyo Purnomo & Phan The Cong & Song Liying, 2023. "Does eco-innovation and green investment limit the CO2 emissions in China?," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 36(1), pages 634-649, March.
    39. AlNemer, Hashem A. & Hkiri, Besma & Tissaoui, Kais, 2023. "Dynamic impact of renewable and non-renewable energy consumption on CO2 emission and economic growth in Saudi Arabia: Fresh evidence from wavelet coherence analysis," Renewable Energy, Elsevier, vol. 209(C), pages 340-356.
    40. Zeeshan Khan & Muhsin Ali & Dervis Kirikkaleli & Salman Wahab & Zhilun Jiao, 2020. "The impact of technological innovation and public‐private partnership investment on sustainable environment in China: Consumption‐based carbon emissions analysis," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1317-1330, September.
    41. Jiao, Zhilun & Sharma, Rajesh & Kautish, Pradeep & Hussain, Hafezali Iqbal, 2021. "Unveiling the asymmetric impact of exports, oil prices, technological innovations, and income inequality on carbon emissions in India," Resources Policy, Elsevier, vol. 74(C).
    42. Qin Fei & Rajah Rasiah & Leow Jia Shen, 2014. "The Clean Energy-Growth Nexus with CO2 Emissions and Technological Innovation in Norway and New Zealand," Energy & Environment, , vol. 25(8), pages 1323-1344, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faik Bilgili & Daniel Balsalobre-Lorente & Sevda Kuşkaya & Mohammed Alnour & Seyit Önderol & Mohammad Enamul Hoque, 2024. "Are research and development on energy efficiency and energy sources effective in the level of CO2 emissions? Fresh evidence from EU data," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 24183-24219, September.
    2. Pazouki, Azadeh & Zhu, Xiaoxian, 2022. "The dynamic impact among oil dependence volatility, the quality of political institutions, and government spending," Energy Economics, Elsevier, vol. 115(C).
    3. Abdul Rauf & Najabat Ali & Muhammad Nauman Sadiq & Saira Abid & Shahzad Afzal Kayani & Abid Hussain, 2023. "Foreign Direct Investment, Technological Innovations, Energy Use, Economic Growth, and Environmental Sustainability Nexus: New Perspectives in BRICS Economies," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    4. Wang, Jing & Rickman, Dan S. & Yu, Yihua, 2022. "Dynamics between global value chain participation, CO2 emissions, and economic growth: Evidence from a panel vector autoregression model," Energy Economics, Elsevier, vol. 109(C).
    5. Shahzadi, Irum & Yaseen, Muhammad Rizwan & Iqbal Khan, Muhammad Tariq & Amjad Makhdum, Muhammad Sohail & Ali, Qamar, 2022. "The nexus between research and development, renewable energy and environmental quality: Evidence from developed and developing countries," Renewable Energy, Elsevier, vol. 190(C), pages 1089-1099.
    6. Kazemzadeh, Emad & Fuinhas, José Alberto & Koengkan, Matheus & Shadmehri, Mohammad Taher Ahmadi, 2023. "Relationship between the share of renewable electricity consumption, economic complexity, financial development, and oil prices: A two-step club convergence and PVAR model approach," International Economics, Elsevier, vol. 173(C), pages 260-275.
    7. Dimitrios Karamanis, 2022. "Defence partnerships, military expenditure, investment, and economic growth: an analysis in PESCO countries," GreeSE – Hellenic Observatory Papers on Greece and Southeast Europe 173, Hellenic Observatory, LSE.
    8. MAÏ ASSAN CHEDI, Maman, 2022. "Does Defence Expenditure Affect Education and Health expenditures in Saharan Africa?," African Journal of Economic Review, African Journal of Economic Review, vol. 10(4), September.
    9. Kumeka, Terver Theophilus & Uzoma-Nwosu, Damian Chidozie & David-Wayas, Maria Onyinye, 2022. "The effects of COVID-19 on the interrelationship among oil prices, stock prices and exchange rates in selected oil exporting economies," Resources Policy, Elsevier, vol. 77(C).
    10. López-Mendoza, Héctor & González-Álvarez, María A. & Montañés, Antonio, 2024. "Assessing the effectiveness of international government responses to the COVID-19 pandemic," Economics & Human Biology, Elsevier, vol. 52(C).
    11. Ryan H. Murphy & Colin O’Reilly, 2019. "Applying panel vector autoregression to institutions, human capital, and output," Empirical Economics, Springer, vol. 57(5), pages 1633-1652, November.
    12. Su, Chi-Wei & Pang, Li-Dong & Tao, Ran & Shao, Xuefeng & Umar, Muhammad, 2022. "Renewable energy and technological innovation: Which one is the winner in promoting net-zero emissions?," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    13. Kacou Yves Thierry Kacou & Yacouba Kassouri & Andrew Adewale Alola & Mehmet Altuntaş, 2022. "Examining the sustainable development approach of migrants' remittances and financial development in sub‐Saharan African countries," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 804-816, October.
    14. Hassan, Mahmoud & Kouzez, Marc & Lee, Ji-Yong & Msolli, Badreddine & Rjiba, Hatem, 2024. "Does increasing environmental policy stringency enhance renewable energy consumption in OECD countries?," Energy Economics, Elsevier, vol. 129(C).
    15. Abdul Majid Awan & Muhammad Azam, 2022. "Evaluating the impact of GDP per capita on environmental degradation for G-20 economies: Does N-shaped environmental Kuznets curve exist?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 11103-11126, September.
    16. Wang, Xinxin & Xu, Zeshui & Qin, Yong & Skare, Marinko, 2022. "Innovation, the knowledge economy, and green growth: Is knowledge-intensive growth really environmentally friendly?," Energy Economics, Elsevier, vol. 115(C).
    17. Asta Ndongo & Ibrahima Thione Diop, 2021. "Economic and Monetary Integration in ECOWAS Countries: A Panel VAR Approach to Identify Macroeconomic Shocks," World Journal of Applied Economics, WERI-World Economic Research Institute, vol. 7(2), pages 61-87, December.
    18. Zia Ul Haq & Usman Mehmood & Salman Tariq & Ayesha Mariam, 2024. "The Impacts of Globalization and GDP on CO2 Emissions: Do Technological Innovation and Renewable Energy Lower Some Burden in SAARC Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(4), pages 15499-15522, December.
    19. Alexandra-Anca Purcel, 2020. "Developing states and the green challenge. A dynamic approach," Post-Print hal-03182341, HAL.
    20. Alexandra-Anca PURCEL, 2020. "Developing States and the Green Challenge. A Dynamic Approach," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 173-193, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:natres:v:49:y:2025:i:2:p:1478-1535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1477-8947 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.