IDEAS home Printed from https://ideas.repec.org/a/taf/applec/v57y2025i2p169-190.html
   My bibliography  Save this article

The dynamic connectedness between macroeconomic uncertainty and commodity volatility: evidence from China

Author

Listed:
  • Xiaopeng Zou
  • Jiawei Hu

Abstract

We investigate the dynamic connectedness between Chinese macroeconomic uncertainty and volatility in Chinese commodity markets, controlling for international macroeconomic uncertainty, international commodities and Economic Policy Uncertainty Index (EPU), and adopting an approach that combines the Diebold – Yilmaz connectedness measure with the time-varying VAR model. Our empirical results indicate that Chinese macroeconomic uncertainty was the main net transmitter of the commodities commonly used in manufacturing, such as chemical engineering materials and non-ferrous metal, over the whole sample period, and had a considerable impact on these commodities due to the production shutdown caused by COVID-19 containment measures. This indicates the important role of Chinese macroeconomic uncertainty on the supply and demand sides. As China is the largest manufacturing country, macroeconomic uncertainty in this nation has had a significant and increasing influence on international commodities, especially when there occur events that severely affect global production activity. However, the impacts of EPUs on commodity volatilities were limited compared with the effects of Chinese macroeconomic uncertainty, especially during the COVID-19 pandemic, demonstrating that macroeconomic uncertainty, which reflects uncertainty about future aggregate supply and demand, plays a more crucial role in driving the volatility of commodities with stronger production attributes.

Suggested Citation

  • Xiaopeng Zou & Jiawei Hu, 2025. "The dynamic connectedness between macroeconomic uncertainty and commodity volatility: evidence from China," Applied Economics, Taylor & Francis Journals, vol. 57(2), pages 169-190, January.
  • Handle: RePEc:taf:applec:v:57:y:2025:i:2:p:169-190
    DOI: 10.1080/00036846.2024.2303406
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00036846.2024.2303406
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00036846.2024.2303406?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    2. Bakas, Dimitrios & Triantafyllou, Athanasios, 2018. "The impact of uncertainty shocks on the volatility of commodity prices," Journal of International Money and Finance, Elsevier, vol. 87(C), pages 96-111.
    3. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    4. Joëts, Marc & Mignon, Valérie & Razafindrabe, Tovonony, 2017. "Does the volatility of commodity prices reflect macroeconomic uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 313-326.
    5. Libo Yin & Liyan Han, 2014. "Macroeconomic uncertainty: does it matter for commodity prices?," Applied Economics Letters, Taylor & Francis Journals, vol. 21(10), pages 711-716, July.
    6. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    7. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    8. Huiming Zhu & Rui Huang & Ningli Wang & Liya Hau, 2020. "Does economic policy uncertainty matter for commodity market in China? Evidence from quantile regression," Applied Economics, Taylor & Francis Journals, vol. 52(21), pages 2292-2308, May.
    9. Ine Van Robays, 2016. "Macroeconomic Uncertainty and Oil Price Volatility," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(5), pages 671-693, October.
    10. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    11. Vegard Høghaug Larsen, 2021. "Components Of Uncertainty," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 769-788, May.
    12. Yang, Lu, 2019. "Connectedness of economic policy uncertainty and oil price shocks in a time domain perspective," Energy Economics, Elsevier, vol. 80(C), pages 219-233.
    13. Koop, Gary & Korobilis, Dimitris, 2014. "A new index of financial conditions," European Economic Review, Elsevier, vol. 71(C), pages 101-116.
    14. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    15. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    16. Castelnuovo, Efrem & Tran, Trung Duc, 2017. "Google It Up! A Google Trends-based Uncertainty index for the United States and Australia," Economics Letters, Elsevier, vol. 161(C), pages 149-153.
    17. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    18. Nikolaos Antonakakis & Ioannis Chatziantoniou & George Filis, 2014. "Dynamic Spillovers of Oil Price Shocks and Policy Uncertainty," Department of Economics Working Papers wuwp166, Vienna University of Economics and Business, Department of Economics.
    19. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Filis, George, 2014. "Dynamic spillovers of oil price shocks and economic policy uncertainty," Energy Economics, Elsevier, vol. 44(C), pages 433-447.
    20. Joëts, Marc & Mignon, Valérie & Razafindrabe, Tovonony, 2017. "Does the volatility of commodity prices reflect macroeconomic uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 313-326.
    21. Bakas, Dimitrios & Triantafyllou, Athanasios, 2019. "Volatility forecasting in commodity markets using macro uncertainty," Energy Economics, Elsevier, vol. 81(C), pages 79-94.
    22. Nikolaos Antonakakis & Ioannis Chatziantoniou & David Gabauer, 2020. "Refined Measures of Dynamic Connectedness based on Time-Varying Parameter Vector Autoregressions," JRFM, MDPI, vol. 13(4), pages 1-23, April.
    23. Christensen, B. J. & Prabhala, N. R., 1998. "The relation between implied and realized volatility," Journal of Financial Economics, Elsevier, vol. 50(2), pages 125-150, November.
    24. Thomas J. Fisher & Colin M. Gallagher, 2012. "New Weighted Portmanteau Statistics for Time Series Goodness of Fit Testing," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 777-787, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hedi Ben Haddad & Imed Mezghani & Abdessalem Gouider, 2021. "The Dynamic Spillover Effects of Macroeconomic and Financial Uncertainty on Commodity Markets Uncertainties," Economies, MDPI, vol. 9(2), pages 1-22, June.
    2. Mokni, Khaled & Al-Shboul, Mohammed & Assaf, Ata, 2021. "Economic policy uncertainty and dynamic spillover among precious metals under market conditions: Does COVID-19 have any effects?," Resources Policy, Elsevier, vol. 74(C).
    3. Yanhong Feng & Dilong Xu & Pierre Failler & Tinghui Li, 2020. "Research on the Time-Varying Impact of Economic Policy Uncertainty on Crude Oil Price Fluctuation," Sustainability, MDPI, vol. 12(16), pages 1-24, August.
    4. Scarcioffolo, Alexandre R. & Etienne, Xiaoli L., 2021. "Regime-switching energy price volatility: The role of economic policy uncertainty," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 336-356.
    5. Syeda Beena Zaidi & Abidullah Khan & Shabeer Khan & Mohd Ziaur Rehman & Wadi B. Alonazi & Abul Ala Noman, 2023. "Connectedness between Pakistan’s Stock Markets with Global Factors: An Application of Quantile VAR Network Model," Mathematics, MDPI, vol. 11(19), pages 1-17, October.
    6. Chatziantoniou, Ioannis & Gabauer, David & Stenfors, Alexis, 2020. "From CIP-deviations to a market for risk premia: A dynamic investigation of cross-currency basis swaps," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 69(C).
    7. Stenfors, Alexis & Chatziantoniou, Ioannis & Gabauer, David, 2022. "Independent policy, dependent outcomes: A game of cross-country dominoes across European yield curves," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    8. Ioannis Chatziantoniou & David Gabauer & Rangan Gupta, 2021. "Integration and Risk Transmission in the Market for Crude Oil: A Time-Varying Parameter Frequency Connectedness Approach," Working Papers 202147, University of Pretoria, Department of Economics.
    9. Elie Bouri & Mahdi Ghaemi Asl & Sahar Darehshiri & David Gabauer, 2024. "Asymmetric connectedness between conventional and Islamic cryptocurrencies: Evidence from good and bad volatility spillovers," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-26, December.
    10. Balcilar, Mehmet & Gabauer, David & Umar, Zaghum, 2021. "Crude Oil futures contracts and commodity markets: New evidence from a TVP-VAR extended joint connectedness approach," Resources Policy, Elsevier, vol. 73(C).
    11. Bouri, Elie & Cepni, Oguzhan & Gabauer, David & Gupta, Rangan, 2021. "Return connectedness across asset classes around the COVID-19 outbreak," International Review of Financial Analysis, Elsevier, vol. 73(C).
    12. Ioannis Chatziantoniou & David Gabauer & Hardik A. Marfatia, 2022. "Dynamic connectedness and spillovers across sectors: Evidence from the Indian stock market," Scottish Journal of Political Economy, Scottish Economic Society, vol. 69(3), pages 283-300, July.
    13. Gabauer, David & Gupta, Rangan, 2020. "Spillovers across macroeconomic, financial and real estate uncertainties: A time-varying approach," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 167-173.
    14. Tiantian Liu & Shigeyuki Hamori, 2021. "Does Investor Sentiment Affect Clean Energy Stock? Evidence from TVP-VAR-Based Connectedness Approach," Energies, MDPI, vol. 14(12), pages 1-21, June.
    15. Bouri, Elie & Lucey, Brian & Saeed, Tareq & Vo, Xuan Vinh, 2021. "The realized volatility of commodity futures: Interconnectedness and determinants#," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 139-151.
    16. Song, Lu & Tian, Gengyu & Jiang, Yonghong, 2022. "Connectedness of commodity, exchange rate and categorical economic policy uncertainties — Evidence from China," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    17. de Boyrie, Maria E. & Pavlova, Ivelina, 2024. "Connectedness with commodities in emerging markets: ESG leaders vs. conventional indexes," Research in International Business and Finance, Elsevier, vol. 71(C).
    18. Chatziantoniou, Ioannis & Gabauer, David & Gupta, Rangan, 2023. "Integration and risk transmission in the market for crude oil: New evidence from a time-varying parameter frequency connectedness approach," Resources Policy, Elsevier, vol. 84(C).
    19. Zhang, Hongwei & Jin, Chen & Bouri, Elie & Gao, Wang & Xu, Yahua, 2023. "Realized higher-order moments spillovers between commodity and stock markets: Evidence from China," Journal of Commodity Markets, Elsevier, vol. 30(C).
    20. Chatziantoniou, Ioannis & Gabauer, David, 2021. "EMU risk-synchronisation and financial fragility through the prism of dynamic connectedness," The Quarterly Review of Economics and Finance, Elsevier, vol. 79(C), pages 1-14.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:57:y:2025:i:2:p:169-190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.