IDEAS home Printed from https://ideas.repec.org/a/red/issued/18-269.html
   My bibliography  Save this article

Data-Rich DSGE Model Forecasts of the Great Recession and its Recovery

Author

Listed:
  • Sacha Gelfer

    (Bentley University)

Abstract

I investigate the extent to which modern dynamic stochastic general equilibrium (DSGE) models can produce macroeconomic and labor market dynamics in response to a financial crisis that are consistent with the experience of the Great Recession. Using the methods of Boivin and Giannoni (2006) and Kryshko (2011), I estimate two DSGE models in a data-rich environment. The two models estimated in this paper include close variations of the Smets and Wouters (2003; 2007) New Keynesian model and the FRBNY (Del Negro et al., 2013) model that augments the Smets & Wouters model with a financial accelerator. I find the model with a financial accelerator that is estimated in a data-rich environment is able to significantly out-forecast modern DSGE models not estimated in a data-rich environment and the Survey of Professional Forecasters (SPF) in regard to core macroeconomic growth variables and many labor and financial metrics including the unemployment rate, total number of employees by sector and business loans. (Copyright: Elsevier)

Suggested Citation

  • Sacha Gelfer, 2019. "Data-Rich DSGE Model Forecasts of the Great Recession and its Recovery," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 32, pages 18-41, April.
  • Handle: RePEc:red:issued:18-269
    DOI: 10.1016/j.red.2018.12.005
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1016/j.red.2018.12.005
    Download Restriction: Access to full texts is restricted to ScienceDirect subscribers and institutional members. See http://www.sciencedirect.com/ for details.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter J. Klenow & Oleksiy Kryvtsov, 2008. "State-Dependent or Time-Dependent Pricing: Does it Matter for Recent U.S. Inflation?," The Quarterly Journal of Economics, Oxford University Press, vol. 123(3), pages 863-904.
    2. Lawrence J. Christiano & Martin S. Eichenbaum & Mathias Trabandt, 2016. "Unemployment and Business Cycles," Econometrica, Econometric Society, vol. 84, pages 1523-1569, July.
    3. Chib, Siddhartha & Greenberg, Edward, 1994. "Bayes inference in regression models with ARMA (p, q) errors," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 183-206.
    4. Tom Holden & Michael Paetz, 2012. "Efficient Simulation of DSGE Models with Inequality Constraints," Quantitative Macroeconomics Working Papers 21207b, Hamburg University, Department of Economics.
    5. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models—Rejoinder," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 211-219.
    6. Jordi Galí & Frank Smets & Rafael Wouters, 2012. "Unemployment in an Estimated New Keynesian Model," NBER Macroeconomics Annual, University of Chicago Press, vol. 26(1), pages 329-360.
    7. James H. Stock & Mark W. Watson, 2003. "Has the Business Cycle Changed and Why?," NBER Chapters,in: NBER Macroeconomics Annual 2002, Volume 17, pages 159-230 National Bureau of Economic Research, Inc.
    8. James H. Stock & Mark W. Watson, 2003. "Has the business cycle changed?," Proceedings - Economic Policy Symposium - Jackson Hole, Federal Reserve Bank of Kansas City, pages 9-56.
    9. Lawrence J. Christiano & Martin S. Eichenbaum & Mathias Trabandt, 2015. "Understanding the Great Recession," American Economic Journal: Macroeconomics, American Economic Association, vol. 7(1), pages 110-167, January.
    10. Bernanke, Ben S. & Gertler, Mark & Gilchrist, Simon, 1999. "The financial accelerator in a quantitative business cycle framework," Handbook of Macroeconomics,in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 21, pages 1341-1393 Elsevier.
    11. Alejandro Justiniano & Giorgio E. Primiceri & Andrea Tambalotti, 2013. "Is There a Trade-Off between Inflation and Output Stabilization?," American Economic Journal: Macroeconomics, American Economic Association, vol. 5(2), pages 1-31, April.
    12. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
    13. Marc P. Giannoni & Jean Boivin, 2005. "DSGE Models in a Data-Rich Environment," Computing in Economics and Finance 2005 431, Society for Computational Economics.
    14. Pablo A. Guerron-Quintana, 2010. "What you match does matter: the effects of data on DSGE estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(5), pages 774-804.
    15. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    16. Robert Barsky & Alejandro Justiniano & Leonardo Melosi, 2014. "The Natural Rate of Interest and Its Usefulness for Monetary Policy," American Economic Review, American Economic Association, vol. 104(5), pages 37-43, May.
    17. Chang-Jin Kim & Charles R. Nelson, 1999. "Has The U.S. Economy Become More Stable? A Bayesian Approach Based On A Markov-Switching Model Of The Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 608-616, November.
    18. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters,in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409 National Bureau of Economic Research, Inc.
    19. Sims, Christopher A, 2002. "Solving Linear Rational Expectations Models," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 1-20, October.
    20. Frank Smets & Raf Wouters, 2003. "An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area," Journal of the European Economic Association, MIT Press, vol. 1(5), pages 1123-1175, September.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Data-rich DSGE; DSGE-DFM; Financial accelerator; Forecast evaluation;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:red:issued:18-269. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christian Zimmermann). General contact details of provider: http://edirc.repec.org/data/sedddea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.