IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i8p2789-d347117.html
   My bibliography  Save this article

Green Biased Technical Change in Terms of Industrial Water Resources in China’s Yangtze River Economic Belt

Author

Listed:
  • Xiyue Zhang

    (Research Center for Economy of Upper Reaches of the Yangtze River, Chongqing Technology and Business University, Chongqing 400067, China
    College of Economics and Business Administration, Chongqing University of Education, Chongqing 400067, China)

  • Fangcheng Sun

    (Research Center for Economy of Upper Reaches of the Yangtze River, Chongqing Technology and Business University, Chongqing 400067, China)

  • Huaizu Wang

    (College of Intellectual Property, Chongqing University of Technology, Chongqing 400054, China)

  • Yi Qu

    (Newcastle Business School, Northumbria University, Newcastle upon Tyne NE1 8ST, UK)

Abstract

As a significant ecological corridor from west to east across China, the Yangtze River Economical Belt (YREB) is in great need of green development and transformation. Rather than only focusing on the overall growth of green productivity, it is important to identify whether the technical change is biased towards economic performance or green performance in promoting green productivity. By employing the biased technical change theory and Malmquist index decomposition method, we analyze the green biased technical change in terms of industrial water resources in YREB at the output side and the input side respectively. We find that the green biased technical change varies during 2006–2015 at both the input side and output side in YREB. At the input side, water-saving biased technical change is generally dominant compared to water-using biased technical change during 2006–2015, presenting the substitution effects of non-water production factors. At the output side, the economy-growth biased technical change is the main force to promote green productivity, whereas the role of water-conservation biased technical change is insufficient. The green performance at the output side needs to be strengthened compared to the economic performance in YREB. A series of water-related environmental policies introduced in China since 2008 have promoted the green biased technical change both at the input side and the output side in YREB, but the policy effects at the output side is still inadequate compared to that at the input side. The technological innovation in sewage treatment and control need to catch up with the economic growth in YREB. Our research gives insights to enable a deeper understanding of the green biased technical change in YREB and will benefit more focused policy-making of green innovation.

Suggested Citation

  • Xiyue Zhang & Fangcheng Sun & Huaizu Wang & Yi Qu, 2020. "Green Biased Technical Change in Terms of Industrial Water Resources in China’s Yangtze River Economic Belt," IJERPH, MDPI, vol. 17(8), pages 1-20, April.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:8:p:2789-:d:347117
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/8/2789/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/8/2789/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    2. Byrnes, Joel & Crase, Lin & Dollery, Brian & Villano, Renato, 2010. "The relative economic efficiency of urban water utilities in regional New South Wales and Victoria," Resource and Energy Economics, Elsevier, vol. 32(3), pages 439-455, August.
    3. Daron Acemoglu & Ufuk Akcigit & Douglas Hanley & William Kerr, 2016. "Transition to Clean Technology," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 52-104.
    4. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    5. Rolf Färe & Emili Grifell‐Tatjé & Shawna Grosskopf & C. A. Knox Lovell, 1997. "Biased Technical Change and the Malmquist Productivity Index," Scandinavian Journal of Economics, Wiley Blackwell, vol. 99(1), pages 119-127, March.
    6. Berndt, Ernst R, 1976. "Reconciling Alternative Estimates of the Elasticity of Substitution," The Review of Economics and Statistics, MIT Press, vol. 58(1), pages 59-68, February.
    7. Weber, William L. & Domazlicky, Bruce R., 1999. "Total factor productivity growth in manufacturing: a regional approach using linear programming," Regional Science and Urban Economics, Elsevier, vol. 29(1), pages 105-122, January.
    8. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    9. Raymond W. Goldsmith, 1951. "A Perpetual Inventory of National Wealth," NBER Chapters, in: Studies in Income and Wealth, Volume 14, pages 5-73, National Bureau of Economic Research, Inc.
    10. Rodríguez, Xosé A. & Regueiro, Rosa M. & Doldán, Xoán R., 2020. "Analysis of productivity in the Spanish wind industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    11. Hu, Jin-Li & Wang, Shih-Chuan & Yeh, Fang-Yu, 2006. "Total-factor water efficiency of regions in China," Resources Policy, Elsevier, vol. 31(4), pages 217-230, December.
    12. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    13. Min Li & Kaisheng Long, 2019. "Direct or Spillover Effect: The Impact of Pure Technical and Scale Efficiencies of Water Use on Water Scarcity in China," IJERPH, MDPI, vol. 16(18), pages 1-13, September.
    14. Barros, Carlos Pestana & Managi, Shunsuke & Matousek, Roman, 2009. "Productivity growth and biased technological change: Credit banks in Japan," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(5), pages 924-936, December.
    15. Md Ali & K. Klein, 2014. "Water Use Efficiency and Productivity of the Irrigation Districts in Southern Alberta," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2751-2766, August.
    16. Rolf Fare & Shawna Grosskopf & Wen-Fu Lee, 2001. "Productivity and technical change: the case of Taiwan," Applied Economics, Taylor & Francis Journals, vol. 33(15), pages 1911-1925.
    17. Benhong Peng & Yue Li & Guo Wei & Ehsan Elahi, 2018. "Temporal and Spatial Differentiations in Environmental Governance," IJERPH, MDPI, vol. 15(10), pages 1-14, October.
    18. Yongzhong Jiang & Xueli Chen & Vivian Valdmanis & Tomas Baležentis, 2019. "Evaluating Economic and Environmental Performance of the Chinese Industry Sector," Sustainability, MDPI, vol. 11(23), pages 1-17, November.
    19. Xueli Wang & Caizhi Sun & Song Wang & Zhixiong Zhang & Wei Zou, 2018. "Going Green or Going Away? A Spatial Empirical Examination of the Relationship between Environmental Regulations, Biased Technological Progress, and Green Total Factor Productivity," IJERPH, MDPI, vol. 15(9), pages 1-23, September.
    20. Walter Briec & Nicolas Peypoch, 2007. "Biased Technical Change and Parallel Neutrality," Journal of Economics, Springer, vol. 92(3), pages 281-292, December.
    21. Popp, David, 2004. "ENTICE: endogenous technological change in the DICE model of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 742-768, July.
    22. Barros, Carlos Pestana & Weber, William L., 2009. "Productivity growth and biased technological change in UK airports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(4), pages 642-653, July.
    23. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    24. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chong Huang & Kedong Yin & Zhe Liu & Tonggang Cao, 2021. "Spatial and Temporal Differences in the Green Efficiency of Water Resources in the Yangtze River Economic Belt and Their Influencing Factors," IJERPH, MDPI, vol. 18(6), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lazkano, Itziar & Nøstbakken, Linda & Pelli, Martino, 2017. "From fossil fuels to renewables: The role of electricity storage," European Economic Review, Elsevier, vol. 99(C), pages 113-129.
    2. Casey, Gregory, "undated". "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259959, Agricultural and Applied Economics Association.
    3. Zhangsheng Liu & Liuqingqing Yang & Liqin Fan, 2021. "Induced Effect of Environmental Regulation on Green Innovation: Evidence from the Increasing-Block Pricing Scheme," IJERPH, MDPI, vol. 18(5), pages 1-15, March.
    4. Cameron Hepburn & Jacquelyn Pless & David Popp, 2018. "Policy Brief—Encouraging Innovation that Protects Environmental Systems: Five Policy Proposals," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 154-169.
    5. Lazkano, Itziar & Pham, Linh, 2016. "Do Fossil fuel Taxes Promote Innovation in Renewable Electricity Generation?," Discussion Paper Series in Economics 16/2016, Norwegian School of Economics, Department of Economics.
    6. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.
    7. Óscar Afonso & Liliana Fonseca & Manuela Magalhães & Paulo B. Vasconcelos, 2021. "Directed technical change and environmental quality," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 20(1), pages 71-97, January.
    8. Li, Kai & Yan, Yaxue & Zhang, Xiaoling, 2021. "Carbon-abatement policies, investment preferences, and directed technological change: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    9. Rik L. Rozendaal & Herman R. J. Vollebergh, 2021. "Policy-Induced Innovation in Clean Technologies: Evidence from the Car Market," CESifo Working Paper Series 9422, CESifo.
    10. Li, Zhen & Wu, Baijun & Wang, Danyang & Tang, Maogang, 2022. "Government mandatory energy-biased technological progress and enterprises' environmental performance: Evidence from a quasi-natural experiment of cleaner production standards in China," Energy Policy, Elsevier, vol. 162(C).
    11. Lamperti, Francesco & Napoletano, Mauro & Roventini, Andrea, 2020. "Green Transitions And The Prevention Of Environmental Disasters: Market-Based Vs. Command-And-Control Policies," Macroeconomic Dynamics, Cambridge University Press, vol. 24(7), pages 1861-1880, October.
    12. Julián D. Gómez, 2018. "¿Qué determina la adopción de tecnologías para la generación de energías renovables entre países?," Documentos CEDE 17132, Universidad de los Andes, Facultad de Economía, CEDE.
    13. Wenhan Ren & Jing Ni & Wen Jiao & Yan Li, 2023. "Explore the key factors of sustainable development: A bibliometric and visual analysis of technological progress," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(1), pages 492-509, February.
    14. Witajewski-Baltvilks, Jan & Verdolini, Elena & Tavoni, Massimo, 2017. "Induced technological change and energy efficiency improvements," Energy Economics, Elsevier, vol. 68(S1), pages 17-32.
    15. Acemoglu, Daron & Rafey, Will, 2023. "Mirage on the horizon: Geoengineering and carbon taxation without commitment," Journal of Public Economics, Elsevier, vol. 219(C).
    16. Nicolò Barbieri & Alberto Marzucchi & Ugo Rizzo, 2021. "Green technologies, complementarities, and policy," SEEDS Working Papers 1021, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Sep 2021.
    17. Tomas Baležentis, 2014. "Total factor productivity in the Lithuanian family farms after accession to the EU: application of the bias-corrected Malmquist indices," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 41(4), pages 731-746, November.
    18. Boyce, John R., 2019. "The paradox of value, directed technical change, and the relative abundance of the chemical elements," Resource and Energy Economics, Elsevier, vol. 58(C).
    19. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2023. "Green technologies, interdependencies, and policy," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    20. Yan, Zheming & Sun, Zao & Shi, Rui & Zhao, Minjuan, 2023. "Smart city and green development: Empirical evidence from the perspective of green technological innovation," Technological Forecasting and Social Change, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:8:p:2789-:d:347117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.