IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Low Emission Development Strategies in Agriculture. An Agriculture, Forestry, and Other Land Uses (AFOLU) Perspective

Listed author(s):
  • De Pinto, Alessandro
  • Li, Man
  • Haruna, Akiko
  • Hyman, Glenn Graham
  • Martinez, Mario Andrés Londoño
  • Creamer, Bernardo
  • Kwon, Ho-Young
  • Garcia, Jhon Brayan Valencia
  • Tapasco, Jeimar
  • Martinez, Jesus David

As countries experience economic growth and choose among available development pathways, they are in a favorable position to adopt natural resource use technologies and production practices that favor efficient use of inputs, healthy soils, and ecosystems. Current emphasis on increasing resilience to climate change and reducing agricultural greenhouse gasses (GHG) emissions strengthens the support for sustainable agricultural production. In fact, reducing losses in soil fertility, reclaiming degraded lands, and promoting synergistic interaction between crop production and forests are generally seen as good climate change policies. In order for decision-makers to develop long-term policies that address these issues, they must have tools at their disposal that evaluate trade-offs, opportunities, and repercussions of the options considered. In this paper, the authors combine and reconcile the output of three models widely accessible to the public to analyze the impacts of policies that target emission reduction in the agricultural sector. We present an application to Colombia which reveals the importance of considering the full scope of interactions among the various land uses. Results indicate that investments in increasing the efficiency and productivity of the livestock sector and reducing land allocated to pasture are preferable to policies that target deforestation alone or target a reduction of emissions in crop production. Investments in livestock productivity and land-carrying capacity would reduce deforestation and provide sufficient gains in carbon stock to offset greater emissions from increased crop production while generating higher revenues.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0305750X16304041
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal World Development.

Volume (Year): 87 (2016)
Issue (Month): C ()
Pages: 180-203

as
in new window

Handle: RePEc:eee:wdevel:v:87:y:2016:i:c:p:180-203
DOI: 10.1016/j.worlddev.2016.06.013
Contact details of provider: Web page: http://www.elsevier.com/locate/worlddev

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Havranek, Tomas & Irsova, Zuzana & Janda, Karel & Zilberman, David, 2015. "Selective reporting and the social cost of carbon," Energy Economics, Elsevier, vol. 51(C), pages 394-406.
  2. Rutten, Martine & van Dijk, Michiel & van Rooij, Wilbert & Hilderink, Henk, 2014. "Land Use Dynamics, Climate Change, and Food Security in Vietnam: A Global-to-local Modeling Approach," World Development, Elsevier, vol. 59(C), pages 29-46.
  3. Alessandro Pinto & Gerald C. Nelson, 2009. "Land Use Change with Spatially Explicit Data: A Dynamic Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(2), pages 209-229, June.
  4. Antle, John M. & Stoorvogel, Jetse J., 2008. "Agricultural carbon sequestration, poverty, and sustainability," Environment and Development Economics, Cambridge University Press, vol. 13(03), pages 327-352, June.
  5. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, March.
  6. Chomitz, Kenneth M & Gray, David A, 1996. "Roads, Land Use, and Deforestation: A Spatial Model Applied to Belize," World Bank Economic Review, World Bank Group, vol. 10(3), pages 487-512, September.
  7. Robinson, Sherman & Mason d'Croz, Daniel & Islam, Shahnila & Cenacchi, Nicola & Creamer, Bernardo & Gueneau, Arthur & Hareau, Guy & Kleinwechter, Ulrich & Mottaleb, Khondoker & Nedumaran, Swamikannu &, 2015. "Climate change adaptation in agriculture: Ex ante analysis of promising and alternative crop technologies using DSSAT and IMPACT:," IFPRI discussion papers 1469, International Food Policy Research Institute (IFPRI).
  8. Uchida, Hirotsugu & Nelson, Andrew, 2010. "Agglomeration Index Towards a New Measure of Urban Concentration," WIDER Working Paper Series 029, World Institute for Development Economic Research (UNU-WIDER).
  9. Gerald C. Nelson & Daniel Hellerstein, 1997. "Do Roads Cause Deforestation? Using Satellite Images in Econometric Analysis of Land Use," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(1), pages 80-88.
  10. Lubowski, Ruben N. & Plantinga, Andrew J. & Stavins, Robert N., 2006. "Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function," Journal of Environmental Economics and Management, Elsevier, vol. 51(2), pages 135-152, March.
  11. H. Charles J. Godfray & Sherman Robinson, 2015. "Contrasting approaches to projecting long-run global food security," Oxford Review of Economic Policy, Oxford University Press, vol. 31(1), pages 26-44.
  12. Willy Makundi & Jayant Sathaye, 2004. "GHG Mitigation Potential and Cost in Tropical Forestry - Relative Role for Agroforestry," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 6(1), pages 235-260, March.
  13. Torres, Arturo Balderas & Marchant, Rob & Lovett, Jon C. & Smart, James C.R. & Tipper, Richard, 2010. "Analysis of the carbon sequestration costs of afforestation and reforestation agroforestry practices and the use of cost curves to evaluate their potential for implementation of climate change mitigat," Ecological Economics, Elsevier, vol. 69(3), pages 469-477, January.
  14. Diagana, Bocar & Antle, John & Stoorvogel, Jetse & Gray, Kara, 2007. "Economic potential for soil carbon sequestration in the Nioro region of Senegal's Peanut Basin," Agricultural Systems, Elsevier, vol. 94(1), pages 26-37, April.
  15. Cacho, Oscar J. & Marshall, Graham R. & Milne, Mary, 2005. "Transaction and abatement costs of carbon-sink projects in developing countries," Environment and Development Economics, Cambridge University Press, vol. 10(05), pages 597-614, October.
  16. Gerald Nelson & Alessandro De Pinto & Virginia Harris & Steven Stone, 2004. "Land Use and Road Improvements: A Spatial Perspective," International Regional Science Review, , vol. 27(3), pages 297-325, July.
  17. repec:eee:ecomod:v:292:y:2014:i:c:p:51-62 is not listed on IDEAS
  18. Ruben N. Lubowski & Steven K. Rose, 2013. "The Potential for REDD+: Key Economic Modeling Insights and Issues," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(1), pages 67-90, January.
  19. Tschakert, Petra, 2007. "Environmental services and poverty reduction: Options for smallholders in the Sahel," Agricultural Systems, Elsevier, vol. 94(1), pages 75-86, April.
  20. Daniel McFadden, 1977. "Modelling the Choice of Residential Location," Cowles Foundation Discussion Papers 477, Cowles Foundation for Research in Economics, Yale University.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:wdevel:v:87:y:2016:i:c:p:180-203. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.