IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v68y2017icp438-447.html
   My bibliography  Save this article

Biophysical and socioeconomic determinants of tea expansion: Apportioning their relative importance for sustainable land use policy

Author

Listed:
  • Zhang, Qianwen
  • Gao, Wujun
  • Su, Shiliang
  • Weng, Min
  • Cai, Zhongliang

Abstract

Tea expansion, a typical process of regional land use and cover change (LUCC), has raised great concerns on regional sustainability. In this regard, exploring the determinants of tea expansion should provide critical implications for land use policy. It has been widely recognized that LUCC interacts nonlinearly with a set of determinants and their feedbacks should be rather complex. Policy makers are now facing the challenge to identify, apportion, and compare the determinants of regional tea expansion for designing more targeted political intervenes. Our paper utilizes a robust tool, the random forest (RF) regression in particular, to explore the determinants of tea expansion across two periods (1985–2007 and 2007–2016) in Anji County, a typical region of tea production in subtropical China. More specifically, tea is extracted from Landsat imageries and total tea cultivated area acts as the dependent variable. Exploratory variables include 38 potential determinants and these determinants are divided into two categories (biophysical and socioeconomic) at two levels (pixel and village). We obtain some similar findings, though the relative importance of determinants varies with the two periods. In general, biophysical determinants (e.g., topography, soil type, land use in the neighborhood) present greater relative importance than the socioeconomic determinants in both periods. In period 1985–2007, biophysical determinants at pixel level are more essential in governing tea expansion. In period 2007–2016, the relative importance of pixel level biophysical determinants is comparable with that of the village level determinants. Comparisons of the two periods indicate that relative importance of soil type and socioeconomic proximity becomes greater in period 2007–2016, while that of the total employees and non-agricultural population proportion becomes lower. Partial dependency plots are further drawn to visualize the marginal effect of each determinant. We finally propose three options for land use policy towards sustainability. Our study demonstrates that the RF regression is efficient for policy makers to understand the determinants of tea expansion with a nonlinear and complex nature.

Suggested Citation

  • Zhang, Qianwen & Gao, Wujun & Su, Shiliang & Weng, Min & Cai, Zhongliang, 2017. "Biophysical and socioeconomic determinants of tea expansion: Apportioning their relative importance for sustainable land use policy," Land Use Policy, Elsevier, vol. 68(C), pages 438-447.
  • Handle: RePEc:eee:lauspo:v:68:y:2017:i:c:p:438-447
    DOI: 10.1016/j.landusepol.2017.08.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837717305173
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2017.08.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De Pinto, Alessandro & Li, Man & Haruna, Akiko & Hyman, Glenn Graham & Martinez, Mario Andrés Londoño & Creamer, Bernardo & Kwon, Ho-Young & Garcia, Jhon Brayan Valencia & Tapasco, Jeimar & Martinez, , 2016. "Low Emission Development Strategies in Agriculture. An Agriculture, Forestry, and Other Land Uses (AFOLU) Perspective," World Development, Elsevier, vol. 87(C), pages 180-203.
    2. Miyamoto, Motoe, 2006. "Forest conversion to rubber around Sumatran villages in Indonesia: Comparing the impacts of road construction, transmigration projects and population," Forest Policy and Economics, Elsevier, vol. 9(1), pages 1-12, November.
    3. Müller, Daniel & Leitão, Pedro J. & Sikor, Thomas, 2013. "Comparing the determinants of cropland abandonment in Albania and Romania using boosted regression trees," Agricultural Systems, Elsevier, vol. 117(C), pages 66-77.
    4. Su, Shiliang & Hu, Yi’na & Luo, Fanghan & Mai, Gengchen & Wang, Yaping, 2014. "Farmland fragmentation due to anthropogenic activity in rapidly developing region," Agricultural Systems, Elsevier, vol. 131(C), pages 87-93.
    5. Wheeler, David & Hammer, Dan & Kraft, Robin & Dasgupta, Susmita & Blankespoor, Brian, 2013. "Economic dynamics and forest clearing: A spatial econometric analysis for Indonesia," Ecological Economics, Elsevier, vol. 85(C), pages 85-96.
    6. Meiyappan, Prasanth & Dalton, Michael & O’Neill, Brian C. & Jain, Atul K., 2014. "Spatial modeling of agricultural land use change at global scale," Ecological Modelling, Elsevier, vol. 291(C), pages 152-174.
    7. Wrenn, Douglas H. & Sam, Abdoul G., 2014. "Geographically and temporally weighted likelihood regression: Exploring the spatiotemporal determinants of land use change," Regional Science and Urban Economics, Elsevier, vol. 44(C), pages 60-74.
    8. Overmars, Koen P. & Verburg, Peter H., 2006. "Multilevel modelling of land use from field to village level in the Philippines," Agricultural Systems, Elsevier, vol. 89(2-3), pages 435-456, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin Lin & Hongzhen Jia & Yi Pan & Lefeng Qiu & Muye Gan & Shenggao Lu & Jinsong Deng & Zhoulu Yu & Ke Wang, 2017. "Exploring the Patterns and Mechanisms of Reclaimed Arable Land Utilization under the Requisition-Compensation Balance Policy in Wenzhou, China," Sustainability, MDPI, vol. 10(1), pages 1-16, December.
    2. Ge, Dazhuan & Long, Hualou & Zhang, Yingnan & Ma, Li & Li, Tingting, 2018. "Farmland transition and its influences on grain production in China," Land Use Policy, Elsevier, vol. 70(C), pages 94-105.
    3. Shuai Li & Zhongyun Ni & Yinbing Zhao & Wei Hu & Zhenrui Long & Haiyu Ma & Guoli Zhou & Yuhao Luo & Chuntao Geng, 2022. "Susceptibility Analysis of Geohazards in the Longmen Mountain Region after the Wenchuan Earthquake," IJERPH, MDPI, vol. 19(6), pages 1-30, March.
    4. Su, Yue & Qian, Kui & Lin, Lin & Wang, Ke & Guan, Tao & Gan, Muye, 2020. "Identifying the driving forces of non-grain production expansion in rural China and its implications for policies on cultivated land protection," Land Use Policy, Elsevier, vol. 92(C).
    5. Allen H. Hu & Chia-Hsiang Chen & Lance Hongwei Huang & Ming-Hsiu Chung & Yi-Chen Lan & Zhonghua Chen, 2019. "Environmental Impact and Carbon Footprint Assessment of Taiwanese Agricultural Products: A Case Study on Taiwanese Dongshan Tea," Energies, MDPI, vol. 12(1), pages 1-13, January.
    6. Shuai Li & Haiyu Ma & Di Yang & Wei Hu & Hao Li, 2023. "The Main Drivers of Wetland Evolution in the Beijing-Tianjin-Hebei Plain," Land, MDPI, vol. 12(2), pages 1-25, February.
    7. Hu, Lirong & He, Shenjing & Han, Zixuan & Xiao, He & Su, Shiliang & Weng, Min & Cai, Zhongliang, 2019. "Monitoring housing rental prices based on social media:An integrated approach of machine-learning algorithms and hedonic modeling to inform equitable housing policies," Land Use Policy, Elsevier, vol. 82(C), pages 657-673.
    8. Yi Liu & Zhongyun Ni & Yinbing Zhao & Guoli Zhou & Yuhao Luo & Shuai Li & Dong Wang & Shaowen Zhang, 2022. "Spatial-Temporal Evolution and Driving Forces of Drying Trends on the Qinghai-Tibet Plateau Based on Geomorphological Division," IJERPH, MDPI, vol. 19(13), pages 1-31, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Euler & Stefan Schwarze & Hermanto Siregar & Matin Qaim, 2016. "Oil Palm Expansion among Smallholder Farmers in Sumatra, Indonesia," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(3), pages 658-676, September.
    2. Robert Pazúr & Juraj Lieskovský & Matthias Bürgi & Daniel Müller & Tibor Lieskovský & Zhen Zhang & Alexander V. Prishchepov, 2020. "Abandonment and Recultivation of Agricultural Lands in Slovakia—Patterns and Determinants from the Past to the Future," Land, MDPI, vol. 9(9), pages 1-22, September.
    3. Widianingsih, Nayu Nuringdati & David, Wahyudi & Pouliot, Mariève & Theilade, Ida, 2019. "Land use, income, and ethnic diversity in the margins of Hutan Harapan – A rainforest restoration concession in Jambi and South sumatra, Indonesia," Land Use Policy, Elsevier, vol. 86(C), pages 268-279.
    4. Krishna, Vijesh V. & Pascual, Unai & Qaim, Matin, 2014. "Do emerging land markets promote forestland appropriation? Evidence from Indonesia," EFForTS Discussion Paper Series 7, University of Goettingen, Collaborative Research Centre 990 "EFForTS, Ecological and Socioeconomic Functions of Tropical Lowland Rainforest Transformation Systems (Sumatra, Indonesia)".
    5. Wei, Lai & Luo, Yun & Wang, Miao & Su, Shiliang & Pi, Jianhua & Li, Guie, 2020. "Essential fragmentation metrics for agricultural policies: Linking landscape pattern, ecosystem service and land use management in urbanizing China," Agricultural Systems, Elsevier, vol. 182(C).
    6. De Pinto, Alessandro & Wiebe, Keith D. & Rosegrant, Mark W., 2016. "Climate change and agricultural policy options: A global-to-local approach," Policy briefs 978-089629-244-4, International Food Policy Research Institute (IFPRI).
    7. Combes Motel, P. & Pirard, R. & Combes, J.-L., 2009. "A methodology to estimate impacts of domestic policies on deforestation: Compensated Successful Efforts for "avoided deforestation" (REDD)," Ecological Economics, Elsevier, vol. 68(3), pages 680-691, January.
    8. Li, Sheng & Nadolnyak, Denis & Hartarska, Valentina, 2019. "Agricultural land conversion: Impacts of economic and natural risk factors in a coastal area," Land Use Policy, Elsevier, vol. 80(C), pages 380-390.
    9. Philipp Otto & Wolfgang Schmid, 2018. "Spatiotemporal analysis of German real-estate prices," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 60(1), pages 41-72, January.
    10. Akpoti, Komlavi & Groen, Thomas & Dossou-Yovo, Elliott & Kabo-bah, Amos T. & Zwart, Sander J., 2022. "Climate change-induced reduction in agricultural land suitability of West-Africa's inland valley landscapes," Agricultural Systems, Elsevier, vol. 200(C).
    11. Troxler, David & Zabel, Astrid & Grêt-Regamey, Adrienne, 2023. "Identifying drivers of forest clearances in Switzerland," Forest Policy and Economics, Elsevier, vol. 150(C).
    12. Daniel P. McMillen & Elizabeth T. Powers, 2017. "The eldercare landscape: Evidence from California," Health Economics, John Wiley & Sons, Ltd., vol. 26(S2), pages 139-157, September.
    13. Zhou, Min & Tan, Shukui & Tao, Yinghui & Lu, Yongzhong & Zhang, Zuo & Zhang, Lu & Yan, Danping, 2017. "Neighborhood socioeconomics, food environment and land use determinants of public health: Isolating the relative importance for essential policy insights," Land Use Policy, Elsevier, vol. 68(C), pages 246-253.
    14. Gatto, Marcel & Wollni, Meike & Qaim, Matin, 2014. "Oil Palm Boom and Land-Use Dynamics in Indonesia: The Role of Policies and Socioeconomic Factors," EFForTS Discussion Paper Series 6, University of Goettingen, Collaborative Research Centre 990 "EFForTS, Ecological and Socioeconomic Functions of Tropical Lowland Rainforest Transformation Systems (Sumatra, Indonesia)".
    15. Neumann, Kathleen & Stehfest, Elke & Verburg, Peter H. & Siebert, Stefan & Müller, Christoph & Veldkamp, Tom, 2011. "Exploring global irrigation patterns: A multilevel modelling approach," Agricultural Systems, Elsevier, vol. 104(9), pages 703-713.
    16. Brian Blankespoor & Susmita Dasgupta & David Wheeler, 2017. "Protected areas and deforestation: new results from high‐resolution panel data," Natural Resources Forum, Blackwell Publishing, vol. 41(1), pages 55-68, February.
    17. Miyamoto, Motoe, 2020. "Poverty reduction saves forests sustainably: Lessons for deforestation policies," World Development, Elsevier, vol. 127(C).
    18. Li, Ziwei & Qi, Zhiming & Jiang, Qianjing & Sima, Nathan, 2021. "An economic analysis software for evaluating best management practices to mitigate greenhouse gas emissions from cropland," Agricultural Systems, Elsevier, vol. 186(C).
    19. Petrescu-Mag, Ruxandra Malina & Petrescu, Dacinia Crina & Azadi, Hossein, 2022. "From scythe to smartphone: Rural transformation in Romania evidenced by the perception of rural land and population," Land Use Policy, Elsevier, vol. 113(C).
    20. Xiaolin Ren & Matthias Weitzel & Brian C. O’Neill & Peter Lawrence & Prasanth Meiyappan & Samuel Levis & Edward J. Balistreri & Michael Dalton, 2018. "Avoided economic impacts of climate change on agriculture: integrating a land surface model (CLM) with a global economic model (iPETS)," Climatic Change, Springer, vol. 146(3), pages 517-531, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:68:y:2017:i:c:p:438-447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.