IDEAS home Printed from https://ideas.repec.org/a/bla/ajarec/v54y2010i4p601-617.html
   My bibliography  Save this article

Minimum-data analysis of ecosystem service supply in semi-subsistence agricultural systems

Author

Listed:
  • John M. Antle
  • Bocar Diagana
  • Jetse J. Stoorvogel
  • Roberto O. Valdivia

Abstract

Antle and Valdivia (2006, Australian Journal of Agricultural and Resource Economics 50, 1-15) proposed a minimum-data (MD) approach to simulate ecosystem service supply curves that can be implemented using readily available secondary data and validated the approach in a case study of soil carbon sequestration in a monoculture wheat system. However, many applications of the MD approach are in developing countries where semi-subsistence systems with multiple production activities are being used and data availability is limited. This paper discusses how MD analysis can be applied to more complex production systems such as semi-subsistence systems with multiple production activities and presents validation analysis for studies of soil carbon sequestration in semi-subsistence farming systems in Kenya and Senegal. Results from these two studies confirm that ecosystem service supply curves based on the MD approach are close approximations to the curves derived from highly detailed data and models and are therefore sufficiently accurate and robust to be used to support policy decision making. Copyright 2010 The Authors. AJARE 2010 Australian Agricultural and Resource Economics Society Inc. and Blackwell Publishing Asia Pty Ltd.

Suggested Citation

  • John M. Antle & Bocar Diagana & Jetse J. Stoorvogel & Roberto O. Valdivia, 2010. "Minimum-data analysis of ecosystem service supply in semi-subsistence agricultural systems," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(4), pages 601-617, October.
  • Handle: RePEc:bla:ajarec:v:54:y:2010:i:4:p:601-617
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1467-8489.2010.00511.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. GR Pautsch & LA Kurkalova & BA Babcock & CL Kling, 2001. "The Efficiency Of Sequestering Carbon In Agricultural Soils," Contemporary Economic Policy, Western Economic Association International, vol. 19(2), pages 123-134, April.
    2. Lubowski, Ruben N. & Plantinga, Andrew J. & Stavins, Robert N., 2006. "Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function," Journal of Environmental Economics and Management, Elsevier, vol. 51(2), pages 135-152, March.
    3. Immerzeel, Walter & Stoorvogel, Jetse & Antle, John, 2008. "Can payments for ecosystem services secure the water tower of Tibet," Agricultural Systems, Elsevier, vol. 96(1-3), pages 52-63, March.
    4. Siân Mooney & John Antle & Susan Capalbo & Keith Paustian, 2004. "Design and Costs of a Measurement Protocol for Trades in Soil Carbon Credits," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 52(3), pages 257-287, November.
    5. De Jager, A. & Onduru, D. & van Wijk, M. S. & Vlaming, J. & Gachini, G. N., 2001. "Assessing sustainability of low-external-input farm management systems with the nutrient monitoring approach: a case study in Kenya," Agricultural Systems, Elsevier, vol. 69(1-2), pages 99-118.
    6. Antle, John & Capalbo, Susan & Mooney, Sian & Elliott, Edward & Paustian, Keith, 2003. "Spatial heterogeneity, contract design, and the efficiency of carbon sequestration policies for agriculture," Journal of Environmental Economics and Management, Elsevier, vol. 46(2), pages 231-250, September.
    7. JunJie Wu & Richard M. Adams & Catherine L. Kling & Katsuya Tanaka, 2004. "From Microlevel Decisions to Landscape Changes: An Assessment of Agricultural Conservation Policies," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(1), pages 26-41.
    8. Imelda Nalukenge & John Antle & Jetse Stoorvogel, 2009. "Assessing the Feasibility of Wetlands Conservation: Using Payments for Ecosystem Services in Pallisa, Uganda," Natural Resource Management and Policy, in: Leslie Lipper & Takumi Sakuyama & Randy Stringer & David Zilberman (ed.), Payment for Environmental Services in Agricultural Landscapes, chapter 11, pages 239-253, Springer.
    9. Antle, John M. & Stoorvogel, Jetse J., 2008. "Agricultural carbon sequestration, poverty, and sustainability," Environment and Development Economics, Cambridge University Press, vol. 13(3), pages 327-352, June.
    10. Diagana, Bocar & Antle, John & Stoorvogel, Jetse & Gray, Kara, 2007. "Economic potential for soil carbon sequestration in the Nioro region of Senegal's Peanut Basin," Agricultural Systems, Elsevier, vol. 94(1), pages 26-37, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erqi Xu & Hongqi Zhang & Yang Yang & Ying Zhang, 2014. "Integrating a Spatially Explicit Tradeoff Analysis for Sustainable Land Use Optimal Allocation," Sustainability, MDPI, vol. 6(12), pages 1-22, December.
    2. John Antle & Stephen Ogle, 2012. "Influence of soil C, N 2 O and fuel use on GHG mitigation with no-till adoption," Climatic Change, Springer, vol. 111(3), pages 609-625, April.
    3. Tran, N. & Crissman, C. & Chijere, A. & Hong, M.C. & Teoh, S.J. & Valdivia, R.O., 2013. "Ex-ante assessment of integrated aquaculture-agriculture adoption and impact in Southern Malawi," Monographs, The WorldFish Center, number 40078, April.
    4. Skidmore, Samuel & Santos, Paulo & Leimona, Beria, 2014. "Targeting REDD+: An Empirical Analysis of Carbon Sequestration in Indonesia," World Development, Elsevier, vol. 64(C), pages 781-790.
    5. Emmanuelle Quillérou & Richard J. Thomas, 2012. "Costs of land degradation and benefits of land restoration: A review of valuation methods and suggested frameworks for inclusion into policy-making," Post-Print hal-01954793, HAL.
    6. Shikuku, Kelvin M. & Valdivia, Roberto O. & Paul, Birthe K. & Mwongera, Caroline & Winowiecki, Leigh & Läderach, Peter & Herrero, Mario & Silvestri, Silvia, 2017. "Prioritizing climate-smart livestock technologies in rural Tanzania: A minimum data approach," Agricultural Systems, Elsevier, vol. 151(C), pages 204-216.
    7. Jiang, Yanan & Guan, Dongjie & He, Xiujuan & Yin, Boling & Zhou, Lilei & Sun, Lingli & Huang, Danan & Li, Zihui & Zhang, Yanjun, 2022. "Quantification of the coupling relationship between ecological compensation and ecosystem services in the Yangtze River Economic Belt, China," Land Use Policy, Elsevier, vol. 114(C).
    8. Valdivia, Roberto O. & Antle, John M. & Stoorvogel, Jetse J., 2012. "Coupling the Tradeoff Analysis Model with a market equilibrium model to analyze economic and environmental outcomes of agricultural production systems," Agricultural Systems, Elsevier, vol. 110(C), pages 17-29.
    9. Murshed-E-Jahan, K. & Crissman, C. & Antle, J., 2013. "Economic and social impacts of Integrated Aquaculture-Agriculture technologies in Bangladesh," Monographs, The WorldFish Center, number 40077, April.
    10. Kanter, David R. & Musumba, Mark & Wood, Sylvia L.R. & Palm, Cheryl & Antle, John & Balvanera, Patricia & Dale, Virginia H. & Havlik, Petr & Kline, Keith L. & Scholes, R.J. & Thornton, Philip & Titton, 2018. "Evaluating agricultural trade-offs in the age of sustainable development," Agricultural Systems, Elsevier, vol. 163(C), pages 73-88.
    11. Nedumaran, S. & Kadiyala, D.M. & Srigiri, S.R. & Roberto, V. & McDermid, S., 2018. "Climate change impacts and vulnerability of fallow-chickpea based farm households in India: Assessment using Integrated modeling approach," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277100, International Association of Agricultural Economists.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John M. Antle & Roberto O. Valdivia, 2006. "Modelling the supply of ecosystem services from agriculture: a minimum‐data approach," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(1), pages 1-15, March.
    2. John Antle & Stephen Ogle, 2012. "Influence of soil C, N 2 O and fuel use on GHG mitigation with no-till adoption," Climatic Change, Springer, vol. 111(3), pages 609-625, April.
    3. Immerzeel, Walter & Stoorvogel, Jetse & Antle, John, 2008. "Can payments for ecosystem services secure the water tower of Tibet," Agricultural Systems, Elsevier, vol. 96(1-3), pages 52-63, March.
    4. Manning, Dale & Rad, Mani Rouhi & Ogle, Stephen, 2022. "Inferring the Supply of GHG Abatement from Agricultural Lands," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322539, Agricultural and Applied Economics Association.
    5. Uwe A. Schneider & Michael Obersteiner & Erwin Schmid & Bruce A. McCarl, 2007. "Agricultural adaptation to climate policies under technical change," Working Papers FNU-133, Research unit Sustainability and Global Change, Hamburg University, revised Jan 2008.
    6. Majeed, Fahd & Khanna, Madhu & Miao, Ruiqing & Blanc, Elena & Hudiburg, Tara & DeLucia, Evan, 2020. "Designing payments for GHG mitigation to induce low carbon bioenergy production," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304394, Agricultural and Applied Economics Association.
    7. Tas Thamo & David J. Pannell & Marit E. Kragt & Michael J. Robertson & Maksym Polyakov, 2017. "Dynamics and the economics of carbon sequestration: common oversights and their implications," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(7), pages 1095-1111, October.
    8. Garnache, Cloe & Merel, Pierre R. & Lee, Juhwan & Six, Johan, 2014. "Markets for Agricultural Greenhouse Gas Offsets: The Role of Policy Design on Abatement Efficiency," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170718, Agricultural and Applied Economics Association.
    9. De Pinto, Alessandro & Li, Man & Haruna, Akiko & Hyman, Glenn Graham & Martinez, Mario Andrés Londoño & Creamer, Bernardo & Kwon, Ho-Young & Garcia, Jhon Brayan Valencia & Tapasco, Jeimar & Martinez, , 2016. "Low Emission Development Strategies in Agriculture. An Agriculture, Forestry, and Other Land Uses (AFOLU) Perspective," World Development, Elsevier, vol. 87(C), pages 180-203.
    10. Garnache, Cloe & Merel, Pierre R., 2012. "Carbon market policy design: Investigating the role of payments aggregation," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124960, Agricultural and Applied Economics Association.
    11. Garnache, Cloé & Mérel, Pierre R. & Lee, Juhwan & Six, Johan, 2017. "The social costs of second-best policies: Evidence from agricultural GHG mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 39-73.
    12. Oladipo S. Obembe & Nathan P. Hendricks, 2022. "Marginal cost of carbon sequestration through forest afforestation of agricultural land in the southeastern United States," Agricultural Economics, International Association of Agricultural Economists, vol. 53(S1), pages 59-73, November.
    13. Soh, Moonwon & Cho, Seong-Hoon & Yu, Edward & Boyer, Christopher & English, Burton, 2018. "Targeting Payments for Ecosystem Services Given Ecological and Economic Objectives," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266502, Southern Agricultural Economics Association.
    14. Erik Nelson & Virginia Matzek, 2016. "Carbon Credits Compete Poorly With Agricultural Commodities In An Optimized Model Of Land Use In Northern California," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 1-24, November.
    15. Cho, Seong-Hoon & Soh, Moonwon & English, Burton C. & Yu, T. Edward & Boyer, Christopher N., 2019. "Targeting payments for forest carbon sequestration given ecological and economic objectives," Forest Policy and Economics, Elsevier, vol. 100(C), pages 214-226.
    16. Graeme Guthrie & Dinesh Kumareswaran, 2009. "Carbon Subsidies, Taxes and Optimal Forest Management," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(2), pages 275-293, June.
    17. Ji, Yongjie & Rabotyagov, Sergey & Kling, Catherine L., 2014. "Crop Choice and Rotational Effects: A Dynamic Model of Land Use in Iowa in Recent Years," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170366, Agricultural and Applied Economics Association.
    18. Ji, Yongjie & Rabotyagov, sergey & Valcu-Lisman, Adriana, 2015. "Estimating Adoption of Cover Crops Using Preferences Revealed by a Dynamic Crop Choice Model," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205799, Agricultural and Applied Economics Association.
    19. Gren, Ing-Marie & Carlsson, Mattias & Elofsson, Katarina & Munnich, Miriam, 2012. "Stochastic carbon sinks for combating carbon dioxide emissions in the EU," Energy Economics, Elsevier, vol. 34(5), pages 1523-1531.
    20. Povellato, Andrea & Bosello, Francesco & Giupponi, Carlo, 2007. "A Review of Recent Studies on Cost Effectiveness of GHG Mitigation Measures in the European Agro-Forestry Sector," Natural Resources Management Working Papers 10268, Fondazione Eni Enrico Mattei (FEEM).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:ajarec:v:54:y:2010:i:4:p:601-617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/aaresea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.