IDEAS home Printed from https://ideas.repec.org/a/kap/jgeosy/v24y2022i3d10.1007_s10109-022-00385-7.html
   My bibliography  Save this article

Modeling discrete choices with large fine-scale spatial data: opportunities and challenges

Author

Listed:
  • Haoying Wang

    (New Mexico Tech)

  • Guohui Wu

    (Amgen Incorporated)

Abstract

Discrete choice models have played a pivotal role in modeling spatial & regional systems in the past few decades. Various extensions for the classic discrete choice models have been developed, including spatial discrete choice models and dynamic discrete choice models. The two categories of models represent methodological developments in the spatial dimension and the temporal dimension of spatial data modeling, respectively. With the growing availability of spatial data in large and more refined scales, spatial and dynamic discrete choice modeling techniques face methodological and computational challenges. By comparing different existing estimation methods, we show that the Bayesian MCMC (Markov chain Monte Carlo) method is the most computationally efficient estimation method for explicitly modeling the spatial relationships with large data sets. As far as dynamic discrete choice models are concerned, most of the existing research effort focuses on improving the model performance in capturing the inter-temporal structures of decision making. In addition, there is an anticipated need to integrate the spatial dimension and the temporal dimension in spatial data modeling. It will require (1) effective solutions to address the computational challenges; and (2) theoretical and methodological innovations in characterizing spatial data processes. We also discussed opportunities and challenges related to empirical analysis with spatial big data, including reviewing several open-source software packages for estimating spatial discrete choice models. Lacking continuous development support and limited applicability are the main issues that prevent them from being widely used.

Suggested Citation

  • Haoying Wang & Guohui Wu, 2022. "Modeling discrete choices with large fine-scale spatial data: opportunities and challenges," Journal of Geographical Systems, Springer, vol. 24(3), pages 325-351, July.
  • Handle: RePEc:kap:jgeosy:v:24:y:2022:i:3:d:10.1007_s10109-022-00385-7
    DOI: 10.1007/s10109-022-00385-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10109-022-00385-7
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10109-022-00385-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sumru Altuğ & Robert A. Miller, 1998. "The Effect of Work Experience on Female Wages and Labour Supply," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(1), pages 45-85.
    2. Giuseppe Arbia & Francesca Petrarca, 2011. "Effects of MAUP on spatial econometric models," Letters in Spatial and Resource Sciences, Springer, vol. 4(3), pages 173-185, October.
    3. V. Joseph Hotz & Robert A. Miller & Seth Sanders & Jeffrey Smith, 1994. "A Simulation Estimator for Dynamic Models of Discrete Choice," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(2), pages 265-289.
    4. Christian A. Vossler & Maurice Doyon & Daniel Rondeau, 2012. "Truth in Consequentiality: Theory and Field Evidence on Discrete Choice Experiments," American Economic Journal: Microeconomics, American Economic Association, vol. 4(4), pages 145-171, November.
    5. Alessandro Pinto & Gerald C. Nelson, 2009. "Land Use Change with Spatially Explicit Data: A Dynamic Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(2), pages 209-229, June.
    6. Scott, Paul, 2014. "Dynamic Discrete Choice Estimation of Agricultural Land Use," TSE Working Papers 14-526, Toulouse School of Economics (TSE).
    7. V. Joseph Hotz & Robert A. Miller, 1993. "Conditional Choice Probabilities and the Estimation of Dynamic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(3), pages 497-529.
    8. Aguirregabiria, Victor & Mira, Pedro, 2010. "Dynamic discrete choice structural models: A survey," Journal of Econometrics, Elsevier, vol. 156(1), pages 38-67, May.
    9. R. Pace & James LeSage, 2009. "A sampling approach to estimate the log determinant used in spatial likelihood problems," Journal of Geographical Systems, Springer, vol. 11(3), pages 209-225, September.
    10. Nicholas G. Polson & James G. Scott & Jesse Windle, 2013. "Bayesian Inference for Logistic Models Using Pólya--Gamma Latent Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1339-1349, December.
    11. Peter Arcidiacono & Patrick Bayer & Jason R. Blevins & Paul B. Ellickson, 2016. "Estimation of Dynamic Discrete Choice Models in Continuous Time with an Application to Retail Competition," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 83(3), pages 889-931.
    12. Martinetti, Davide & Geniaux, Ghislain, 2017. "Approximate likelihood estimation of spatial probit models," Regional Science and Urban Economics, Elsevier, vol. 64(C), pages 30-45.
    13. Borsch-Supan, Axel & Hajivassiliou, Vassilis A., 1993. "Smooth unbiased multivariate probability simulators for maximum likelihood estimation of limited dependent variable models," Journal of Econometrics, Elsevier, vol. 58(3), pages 347-368, August.
    14. Cinzia Cirillo & Renting Xu, 2011. "Dynamic Discrete Choice Models for Transportation," Transport Reviews, Taylor & Francis Journals, vol. 31(4), pages 473-494.
    15. Peter Arcidiacono & Robert A. Miller, 2011. "Conditional Choice Probability Estimation of Dynamic Discrete Choice Models With Unobserved Heterogeneity," Econometrica, Econometric Society, vol. 79(6), pages 1823-1867, November.
    16. Amemiya, Takeshi, 1981. "Qualitative Response Models: A Survey," Journal of Economic Literature, American Economic Association, vol. 19(4), pages 1483-1536, December.
    17. Wang, Haoying & Ortiz-Bobea, Ariel, 2019. "Market-Driven Corn Monocropping in the U.S. Midwest," Agricultural and Resource Economics Review, Cambridge University Press, vol. 48(2), pages 274-296, August.
    18. Smirnov, Oleg & Anselin, Luc, 2001. "Fast maximum likelihood estimation of very large spatial autoregressive models: a characteristic polynomial approach," Computational Statistics & Data Analysis, Elsevier, vol. 35(3), pages 301-319, January.
    19. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, January.
    20. Charles F. Manski, 2001. "Daniel McFadden and the Econometric Analysis of Discrete Choice," Scandinavian Journal of Economics, Wiley Blackwell, vol. 103(2), pages 217-230, June.
    21. Anping Chen & Marlon Boarnet & Mark Partridge & Raffaella Calabrese & Johan A. Elkink, 2014. "Estimators Of Binary Spatial Autoregressive Models: A Monte Carlo Study," Journal of Regional Science, Wiley Blackwell, vol. 54(4), pages 664-687, September.
    22. Susumu Imai & Neelam Jain & Andrew Ching, 2009. "Bayesian Estimation of Dynamic Discrete Choice Models," Econometrica, Econometric Society, vol. 77(6), pages 1865-1899, November.
    23. Khai Xiang Chiong & Matthew Shum, 2019. "Random Projection Estimation of Discrete-Choice Models with Large Choice Sets," Management Science, INFORMS, vol. 65(1), pages 256-271, January.
    24. Andriy Norets, 2012. "Estimation of Dynamic Discrete Choice Models Using Artificial Neural Network Approximations," Econometric Reviews, Taylor & Francis Journals, vol. 31(1), pages 84-106.
    25. Michael P. Keane & Robert M. Sauer, 2009. "Classification Error in Dynamic Discrete Choice Models: Implications for Female Labor Supply Behavior," Econometrica, Econometric Society, vol. 77(3), pages 975-991, May.
    26. Pinkse, Joris & Slade, Margaret E., 1998. "Contracting in space: An application of spatial statistics to discrete-choice models," Journal of Econometrics, Elsevier, vol. 85(1), pages 125-154, July.
    27. Pace, R. Kelley & LeSage, James P., 2004. "Chebyshev approximation of log-determinants of spatial weight matrices," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 179-196, March.
    28. Sean M. O'Brien & David B. Dunson, 2004. "Bayesian Multivariate Logistic Regression," Biometrics, The International Biometric Society, vol. 60(3), pages 739-746, September.
    29. Anna Gloria Billé & Giuseppe Arbia, 2019. "Spatial Limited Dependent Variable Models: A Review Focused On Specification, Estimation, And Health Economics Applications," Journal of Economic Surveys, Wiley Blackwell, vol. 33(5), pages 1531-1554, December.
    30. Joris Pinkse & Margaret Slade & Lihong Shen, 2006. "Dynamic Spatial Discrete Choice Using One-step GMM: An Application to Mine Operating Decisions," Spatial Economic Analysis, Taylor & Francis Journals, vol. 1(1), pages 53-99.
    31. Zhou, Bin (Brenda) & Kockelman, Kara M., 2009. "Predicting the distribution of households and employment: a seemingly unrelated regression model with two spatial processes," Journal of Transport Geography, Elsevier, vol. 17(5), pages 369-376.
    32. Andrew Gelman, 2003. "A Bayesian Formulation of Exploratory Data Analysis and Goodness‐of‐fit Testing," International Statistical Review, International Statistical Institute, vol. 71(2), pages 369-382, August.
    33. Alwosheel, Ahmad & van Cranenburgh, Sander & Chorus, Caspar G., 2018. "Is your dataset big enough? Sample size requirements when using artificial neural networks for discrete choice analysis," Journal of choice modelling, Elsevier, vol. 28(C), pages 167-182.
    34. Peter Arcidiacono & Paul B. Ellickson, 2011. "Practical Methods for Estimation of Dynamic Discrete Choice Models," Annual Review of Economics, Annual Reviews, vol. 3(1), pages 363-394, September.
    35. Patrick Bayer & Robert McMillan & Alvin Murphy & Christopher Timmins, 2016. "A Dynamic Model of Demand for Houses and Neighborhoods," Econometrica, Econometric Society, vol. 84, pages 893-942, May.
    36. Smirnov, Oleg A., 2010. "Modeling spatial discrete choice," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 292-298, September.
    37. Klier, Thomas & McMillen, Daniel P, 2008. "Clustering of Auto Supplier Plants in the United States," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 460-471.
    38. Anselin, Luc, 2002. "Under the hood : Issues in the specification and interpretation of spatial regression models," Agricultural Economics, Blackwell, vol. 27(3), pages 247-267, November.
    39. Vijverberg, Wim P. M., 1997. "Monte Carlo evaluation of multivariate normal probabilities," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 281-307.
    40. Sener, Ipek N. & Pendyala, Ram M. & Bhat, Chandra R., 2011. "Accommodating spatial correlation across choice alternatives in discrete choice models: an application to modeling residential location choice behavior," Journal of Transport Geography, Elsevier, vol. 19(2), pages 294-303.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastian Galiani & Juan Pantano, 2021. "Structural Models: Inception and Frontier," NBER Working Papers 28698, National Bureau of Economic Research, Inc.
    2. Ji, Yongjie & Rabotyagov, Sergey & Kling, Catherine L., 2014. "Crop Choice and Rotational Effects: A Dynamic Model of Land Use in Iowa in Recent Years," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170366, Agricultural and Applied Economics Association.
    3. Victor Aguirregabiria & Allan Collard-Wexler & Stephen P. Ryan, 2021. "Dynamic Games in Empirical Industrial Organization," NBER Working Papers 29291, National Bureau of Economic Research, Inc.
    4. Amoroso, S., 2013. "Heterogeneity of innovative, collaborative, and productive firm-level processes," Other publications TiSEM f5784a49-7053-401d-855d-1, Tilburg University, School of Economics and Management.
    5. Arcidiacono, Peter & Miller, Robert A., 2020. "Identifying dynamic discrete choice models off short panels," Journal of Econometrics, Elsevier, vol. 215(2), pages 473-485.
    6. Aguirregabiria, Victor & Mira, Pedro, 2010. "Dynamic discrete choice structural models: A survey," Journal of Econometrics, Elsevier, vol. 156(1), pages 38-67, May.
    7. Tamás Krisztin & Philipp Piribauer, 2021. "A Bayesian spatial autoregressive logit model with an empirical application to European regional FDI flows," Empirical Economics, Springer, vol. 61(1), pages 231-257, July.
    8. Daniel Ackerberg, 2009. "A new use of importance sampling to reduce computational burden in simulation estimation," Quantitative Marketing and Economics (QME), Springer, vol. 7(4), pages 343-376, December.
    9. Holmes, Thomas J. & Sieg, Holger, 2015. "Structural Estimation in Urban Economics," Handbook of Regional and Urban Economics, in: Gilles Duranton & J. V. Henderson & William C. Strange (ed.), Handbook of Regional and Urban Economics, edition 1, volume 5, chapter 0, pages 69-114, Elsevier.
    10. Myrto Kalouptsidi & Paul T. Scott & Eduardo Souza-Rodrigues, 2018. "Linear IV Regression Estimators for Structural Dynamic Discrete Choice Models," NBER Working Papers 25134, National Bureau of Economic Research, Inc.
    11. Smirnov, Oleg A., 2010. "Modeling spatial discrete choice," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 292-298, September.
    12. Jean-Sauveur Ay & Raja Chakir & Julie Le Gallo, 2014. "The effects of scale, space and time on the predictive accuracy of land use models," Working Papers 2014/02, INRA, Economie Publique.
    13. Kalouptsidi, Myrto & Scott, Paul T. & Souza-Rodrigues, Eduardo, 2021. "Linear IV regression estimators for structural dynamic discrete choice models," Journal of Econometrics, Elsevier, vol. 222(1), pages 778-804.
    14. Heijnen, P. & Samarina, A.. & Jacobs, J.P.A.M. & Elhorst, J.P., 2013. "State transfers at different moments in time," Research Report 13006-EEF, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    15. Bruneel-Zupanc, Christophe Alain, 2021. "Discrete-Continuous Dynamic Choice Models: Identification and Conditional Choice Probability Estimation," TSE Working Papers 21-1185, Toulouse School of Economics (TSE).
    16. Hu, Yingyao & Xin, Yi, 2024. "Identification and estimation of dynamic structural models with unobserved choices," Journal of Econometrics, Elsevier, vol. 242(2).
    17. repec:dgr:rugsom:13006-eef is not listed on IDEAS
    18. Anping Chen & Marlon Boarnet & Mark Partridge & Raffaella Calabrese & Johan A. Elkink, 2014. "Estimators Of Binary Spatial Autoregressive Models: A Monte Carlo Study," Journal of Regional Science, Wiley Blackwell, vol. 54(4), pages 664-687, September.
    19. Hema Yoganarasimhan, 2013. "The Value of Reputation in an Online Freelance Marketplace," Marketing Science, INFORMS, vol. 32(6), pages 860-891, November.
    20. Kalouptsidi, Myrto & Scott, Paul T. & Souza-Rodrigues, Eduardo, 2018. "Linear IV Regression Estimators for Structural Dynamic Discrete Choice Models," CEPR Discussion Papers 13240, C.E.P.R. Discussion Papers.
    21. Klaus Glenk & Robert J. Johnston & Jürgen Meyerhoff & Julian Sagebiel, 2020. "Spatial Dimensions of Stated Preference Valuation in Environmental and Resource Economics: Methods, Trends and Challenges," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(2), pages 215-242, February.

    More about this item

    Keywords

    Discrete choice model; Spatial big data; Data scale; Spatial analytics; Remote sensing data; Bayesian estimation;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • R1 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jgeosy:v:24:y:2022:i:3:d:10.1007_s10109-022-00385-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.