IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v83y2015icp267-276.html
   My bibliography  Save this article

The diffusion of patented oil and gas technology with environmental uses: A forward patent citation analysis

Author

Listed:
  • Duch-Brown, Néstor
  • Costa-Campi, María Teresa

Abstract

Relevant advances in the mitigation of environmental impact could be obtained by the appropriate diffusion of existing environmental technologies. In this paper, we look at the diffusion of knowledge related to environmental technologies developed within the oil and gas industry. To assess knowledge spillovers from oil and gas inventions as a measure of technology diffusion, we rely on forward patent citations methodology. Results show that there is a strong likelihood that the citing patent will be eventually linked to environmental technologies if the original oil and gas invention has already environmental uses. Moreover, both intra and intersectoral spillovers produce a “turnabout” effect, meaning that citing patents show the opposite quality level of the cited patent. Our results support the idea that more sector-specific environmental policies, with an emphasis on diffusion, would significantly improve the use of environmental technologies developed within the oil and gas industry.

Suggested Citation

  • Duch-Brown, Néstor & Costa-Campi, María Teresa, 2015. "The diffusion of patented oil and gas technology with environmental uses: A forward patent citation analysis," Energy Policy, Elsevier, vol. 83(C), pages 267-276.
  • Handle: RePEc:eee:enepol:v:83:y:2015:i:c:p:267-276
    DOI: 10.1016/j.enpol.2015.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142151500107X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2015.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mitchell, John V. & Mitchell, Beth, 2014. "Structural crisis in the oil and gas industry," Energy Policy, Elsevier, vol. 64(C), pages 36-42.
    2. Bointner, Raphael, 2014. "Innovation in the energy sector: Lessons learnt from R&D expenditures and patents in selected IEA countries," Energy Policy, Elsevier, vol. 73(C), pages 733-747.
    3. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    4. Bronwyn H. Hall & Adam Jaffe & Manuel Trajtenberg, 2005. "Market Value and Patent Citations," RAND Journal of Economics, The RAND Corporation, vol. 36(1), pages 16-38, Spring.
    5. Adam B. Jaffe & Manuel Trajtenberg & Rebecca Henderson, 1993. "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(3), pages 577-598.
    6. Santos Silva, J.M.C. & Tenreyro, Silvana, 2011. "Further simulation evidence on the performance of the Poisson pseudo-maximum likelihood estimator," Economics Letters, Elsevier, vol. 112(2), pages 220-222, August.
    7. David Popp, 2012. "The Role of Technological Change in Green Growth," NBER Working Papers 18506, National Bureau of Economic Research, Inc.
    8. G. M.P. Swann, 2009. "The Economics of Innovation," Books, Edward Elgar Publishing, number 13211.
    9. Aalbers, Rob & Shestalova, Victoria & Kocsis, Viktória, 2013. "Innovation policy for directing technical change in the power sector," Energy Policy, Elsevier, vol. 63(C), pages 1240-1250.
    10. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    11. Yeh, Sonia & Rubin, Edward S., 2012. "A review of uncertainties in technology experience curves," Energy Economics, Elsevier, vol. 34(3), pages 762-771.
    12. Aguirre, Mariana & Ibikunle, Gbenga, 2014. "Determinants of renewable energy growth: A global sample analysis," Energy Policy, Elsevier, vol. 69(C), pages 374-384.
    13. Carpenter, Mark P. & Narin, Francis & Woolf, Patricia, 1981. "Citation rates to technologically important patents," World Patent Information, Elsevier, vol. 3(4), pages 160-163, October.
    14. Carraro, Carlo & De Cian, Enrica & Nicita, Lea & Massetti, Emanuele & Verdolini, Elena, 2010. "Environmental Policy and Technical Change: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 4(2), pages 163-219, October.
    15. David Popp, 2010. "Innovation and Climate Policy," NBER Working Papers 15673, National Bureau of Economic Research, Inc.
    16. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
    17. David Popp, 2010. "Innovation and Climate Policy," Annual Review of Resource Economics, Annual Reviews, vol. 2(1), pages 275-298, October.
    18. Kemp, René & Pontoglio, Serena, 2011. "The innovation effects of environmental policy instruments — A typical case of the blind men and the elephant?," Ecological Economics, Elsevier, vol. 72(C), pages 28-36.
    19. Nemet, Gregory F., 2012. "Inter-technology knowledge spillovers for energy technologies," Energy Economics, Elsevier, vol. 34(5), pages 1259-1270.
    20. Rob Aalbers & Victoria Shestalova & Viktoria Kocsis, 2012. "Innovation policy for directing technical change in the power sector," CPB Discussion Paper 223, CPB Netherlands Bureau for Economic Policy Analysis.
    21. Pollitt, Michael G., 2012. "The role of policy in energy transitions: Lessons from the energy liberalisation era," Energy Policy, Elsevier, vol. 50(C), pages 128-137.
    22. Bronwyn H. Hall & Dietmar Harhoff, 2012. "Recent Research on the Economics of Patents," Annual Review of Economics, Annual Reviews, vol. 4(1), pages 541-565, July.
    23. Manuel Acosta & Daniel Coronado & Ana Fernández, 2009. "Exploring the quality of environmental technology in Europe: evidence from patent citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 80(1), pages 131-152, July.
    24. Ivan Haščič & Nick Johnstone, 2011. "CDM and international technology transfer: empirical evidence on wind power," Climate Policy, Taylor & Francis Journals, vol. 11(6), pages 1303-1314, November.
    25. Popp, David, 2005. "Lessons from patents: Using patents to measure technological change in environmental models," Ecological Economics, Elsevier, vol. 54(2-3), pages 209-226, August.
    26. Veugelers, Reinhilde, 2012. "Which policy instruments to induce clean innovating?," Research Policy, Elsevier, vol. 41(10), pages 1770-1778.
    27. Jeffrey M. Wooldridge, 2003. "Cluster-Sample Methods in Applied Econometrics," American Economic Review, American Economic Association, vol. 93(2), pages 133-138, May.
    28. Popp, David, 2012. "The role of technological change in green growth," Policy Research Working Paper Series 6239, The World Bank.
    29. Popp, David & Hascic, Ivan & Medhi, Neelakshi, 2011. "Technology and the diffusion of renewable energy," Energy Economics, Elsevier, vol. 33(4), pages 648-662, July.
    30. Höök, Mikael & Tang, Xu, 2013. "Depletion of fossil fuels and anthropogenic climate change—A review," Energy Policy, Elsevier, vol. 52(C), pages 797-809.
    31. Adam Jaffe & Richard Newell & Robert Stavins, 2002. "Environmental Policy and Technological Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 22(1), pages 41-70, June.
    32. Moulton, Brent R., 1990. "Interpretation of Graphs that Compare the Distribution Functions of Estimators," Econometric Theory, Cambridge University Press, vol. 6(1), pages 97-102, March.
    33. Antweiler, Werner, 2001. "Nested random effects estimation in unbalanced panel data," Journal of Econometrics, Elsevier, vol. 101(2), pages 295-313, April.
    34. Lee, Kyungpyo & Lee, Sungjoo, 2013. "Patterns of technological innovation and evolution in the energy sector: A patent-based approach," Energy Policy, Elsevier, vol. 59(C), pages 415-432.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liping Wu & Man Xu, 2022. "Research on Cooperative Innovation Network Structure and Evolution Characteristics of Electric Vehicle Industry," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    2. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2017. "Assessing environmental performance in the European Union: Eco-innovation versus catching-up," Energy Policy, Elsevier, vol. 104(C), pages 240-252.
    3. Aldona Małgorzata Dereń & Jan Skonieczny, 2022. "Green Intellectual Property as a Strategic Resource in the Sustainable Development of an Organization," Sustainability, MDPI, vol. 14(8), pages 1-11, April.
    4. Torrecillas, Celia & Fernández, Sara & García-García, Claudia, 2023. "Drivers to increase eco-efficiencies in Uruguay, Peru, and Panama," Energy Policy, Elsevier, vol. 183(C).
    5. Zhang, Gupeng & Duan, Hongbo & Wang, Shouyang & Zhang, Qianlong, 2018. "Comparative technological advantages between China and developed areas in respect of energy production: Quantitative and qualitative measurements based on patents," Energy, Elsevier, vol. 162(C), pages 1223-1233.
    6. Jin, Peizhen & Mangla, Sachin Kumar & Song, Malin, 2022. "The power of innovation diffusion: How patent transfer affects urban innovation quality," Journal of Business Research, Elsevier, vol. 145(C), pages 414-425.
    7. Beatriz Jiménez‐Parra & Daniel Alonso‐Martínez & José‐Luis Godos‐Díez, 2018. "The influence of corporate social responsibility on air pollution: Analysis of environmental regulation and eco‐innovation effects," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 25(6), pages 1363-1375, November.
    8. Fernández, Ana María & Ferrándiz, Esther & Medina, Jennifer, 2022. "The diffusion of energy technologies. Evidence from renewable, fossil, and nuclear energy patents," Technological Forecasting and Social Change, Elsevier, vol. 178(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duch-Brown, Néstor & Costa-Campi, María Teresa, 2015. "The diffusion of patented oil and gas technology with environmental uses: A forward patent citation analysis," Energy Policy, Elsevier, vol. 83(C), pages 267-276.
    2. Clement Bonnet, 2020. "Measuring Knowledge with Patent Data: an Application to Low Carbon Energy Technologies," Working Papers hal-02971680, HAL.
    3. Fernández, Ana María & Ferrándiz, Esther & Medina, Jennifer, 2022. "The diffusion of energy technologies. Evidence from renewable, fossil, and nuclear energy patents," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    4. Plank, Josef & Doblinger, Claudia, 2018. "The firm-level innovation impact of public R&D funding: Evidence from the German renewable energy sector," Energy Policy, Elsevier, vol. 113(C), pages 430-438.
    5. Clément Bonnet, 2016. "Measuring Knowledge with Patent Data: an Application to Low Carbon Energy Technologies," EconomiX Working Papers 2016-37, University of Paris Nanterre, EconomiX.
    6. Clément Bonnet, 2017. "Measuring Inventive Performance with Patent Data: an Application to Low Carbon Energy Technologies," Working Papers 1709, Chaire Economie du climat.
    7. Joëlle Noailly & Victoria Shestalova, 2013. "Knowledge spillovers from renewable energy technologies, Lessons from patent citations," CPB Discussion Paper 262, CPB Netherlands Bureau for Economic Policy Analysis.
    8. Kristoffer Palage & Robert Lundmark & Patrik Söderholm, 2019. "The innovation effects of renewable energy policies and their interaction: the case of solar photovoltaics," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 217-254, April.
    9. Joelle Noailly & Victoria Shestalova, 2013. "Knowledge Spillovers from Renewable energy Technologies, Lessons from patent citations," CIES Research Paper series 22-2013, Centre for International Environmental Studies, The Graduate Institute.
    10. Giovanni Marin & Francesca Lotti, 2017. "Productivity effects of eco-innovations using data on eco-patents," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 26(1), pages 125-148.
    11. Joelle Noailly & Victoria Shestalova, 2013. "Knowledge Spillovers from Renewable energy Technologies, Lessons from patent citations," CIES Research Paper series 22-2013, Centre for International Environmental Studies, The Graduate Institute.
    12. Gianluca ORSATTI, 2019. "Public R&D and green knowledge diffusion:\r\nEvidence from patent citation data," Cahiers du GREThA (2007-2019) 2019-17, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    13. Nicolli, Francesco & Vona, Francesco, 2016. "Heterogeneous policies, heterogeneous technologies: The case of renewable energy," Energy Economics, Elsevier, vol. 56(C), pages 190-204.
    14. Peters, Michael & Schneider, Malte & Griesshaber, Tobias & Hoffmann, Volker H., 2012. "The impact of technology-push and demand-pull policies on technical change – Does the locus of policies matter?," Research Policy, Elsevier, vol. 41(8), pages 1296-1308.
    15. Serkan ÇINAR & Mine YILMAZER, 2021. "Determinants of Green Technologies in Developing Countries," Isletme ve Iktisat Calismalari Dergisi, Econjournals, vol. 9(2), pages 155-167.
    16. Nemet, Gregory F., 2012. "Inter-technology knowledge spillovers for energy technologies," Energy Economics, Elsevier, vol. 34(5), pages 1259-1270.
    17. Valeria Costantini & Francesco Crespi & Alessandro Palma, 2014. "Policy Inducement Effects in Energy Efficiency Technologies. An Empirical Analysis on the Residential Sector," SEEDS Working Papers 1914, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Aug 2014.
    18. repec:hal:spmain:info:hdl:2441/4b9o704lm99vm9u7s9e6fdpp6r is not listed on IDEAS
    19. Elena Verdolini & Valentina Bosetti, 2017. "Environmental Policy and the International Diffusion of Cleaner Energy Technologies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 497-536, March.
    20. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    21. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).

    More about this item

    Keywords

    Forward patent citations; Petroleum industry; Technology flows; Environmental and technology policies;
    All these keywords.

    JEL classification:

    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:83:y:2015:i:c:p:267-276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.