IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v60y2013icp558-568.html
   My bibliography  Save this article

Estimates of electricity saving potential in Chinese nonferrous metals industry

Author

Listed:
  • Lin, Boqiang
  • Zhang, Guoliang

Abstract

The paper analyzes the electricity saving potential of nonferrous metals industry in China. The cointegration method is applied to estimate electricity intensity of Chinese nonferrous metals industry, in an effort to predict future electricity saving potential. The results show that there is a long-run equilibrium between electricity intensity and factors such as R&D intensity, industrial electricity price, enterprise scale, and labor productivity. By means of scenario analysis, we evaluate different possible measures that might be adopted to narrow down the electricity efficiency gap between nonferrous metals industry in China and that of Japan. The results indicate that more active electricity conservation policies are needed in order to reduce the electricity intensity of Chinese nonferrous metals industry. We also find that the electricity efficiency gap could be significantly narrowed by 2020 if proper electricity conservation policy is adopted. Finally, based on the results of the scenario analysis, future policy priorities are suggested.

Suggested Citation

  • Lin, Boqiang & Zhang, Guoliang, 2013. "Estimates of electricity saving potential in Chinese nonferrous metals industry," Energy Policy, Elsevier, vol. 60(C), pages 558-568.
  • Handle: RePEc:eee:enepol:v:60:y:2013:i:c:p:558-568
    DOI: 10.1016/j.enpol.2013.05.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142151300387X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.05.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Worrell, Ernst & Martin, Nathan & Price, Lynn, 2000. "Potentials for energy efficiency improvement in the US cement industry," Energy, Elsevier, vol. 25(12), pages 1189-1214.
    2. MacKinnon, James G & Haug, Alfred A & Michelis, Leo, 1999. "Numerical Distribution Functions of Likelihood Ratio Tests for Cointegration," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 563-577, Sept.-Oct.
    3. Lin, Boqiang & Wu, Ya & Zhang, Li, 2011. "Estimates of the potential for energy conservation in the Chinese steel industry," Energy Policy, Elsevier, vol. 39(6), pages 3680-3689, June.
    4. Lenzen, Manfred, 1998. "Primary energy and greenhouse gases embodied in Australian final consumption: an input-output analysis," Energy Policy, Elsevier, vol. 26(6), pages 495-506, May.
    5. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    6. Ma, Hengyun & Oxley, Les & Gibson, John & Kim, Bonggeun, 2008. "China's energy economy: Technical change, factor demand and interfactor/interfuel substitution," Energy Economics, Elsevier, vol. 30(5), pages 2167-2183, September.
    7. Johansen, Soren & Juselius, Katarina, 1990. "Maximum Likelihood Estimation and Inference on Cointegration--With Applications to the Demand for Money," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 52(2), pages 169-210, May.
    8. Zhang, Liang, 2012. "Electricity pricing in a partial reformed plan system: The case of China," Energy Policy, Elsevier, vol. 43(C), pages 214-225.
    9. Blumstein, Carl & Stoft, Steven E, 1995. "Technical efficiency, production functions and conservation supply curves," Energy Policy, Elsevier, vol. 23(9), pages 765-768, September.
    10. Muller-Furstenberger, Georg & Stephan, Gunter, 2007. "Integrated assessment of global climate change with learning-by-doing and energy-related research and development," Energy Policy, Elsevier, vol. 35(11), pages 5298-5309, November.
    11. Sabuhoro, Jean Bosco & Larue, Bruno, 1997. "The market efficiency hypothesis: The case of coffee and cocoa futures," Agricultural Economics, Blackwell, vol. 16(3), pages 171-184, August.
    12. Osterwald-Lenum, Michael, 1992. "A Note with Quantiles of the Asymptotic Distribution of the Maximum Likelihood Cointegration Rank Test Statistics," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 54(3), pages 461-472, August.
    13. Lin, Boqiang & Wu, Ya & Zhang, Li, 2012. "Electricity saving potential of the power generation industry in China," Energy, Elsevier, vol. 40(1), pages 307-316.
    14. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    15. Hübler, Michael, 2011. "Technology diffusion under contraction and convergence: A CGE analysis of China," Energy Economics, Elsevier, vol. 33(1), pages 131-142, January.
    16. Ma, Hengyun & Oxley, Les & Gibson, John, 2009. "Substitution possibilities and determinants of energy intensity for China," Energy Policy, Elsevier, vol. 37(5), pages 1793-1804, May.
    17. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    18. Liu, Hongtao & Xi, Youmin & Guo, Ju'e & Li, Xia, 2010. "Energy embodied in the international trade of China: An energy input-output analysis," Energy Policy, Elsevier, vol. 38(8), pages 3957-3964, August.
    19. Kuswardhani, Nita & Soni, Peeyush & Shivakoti, Ganesh P., 2013. "Comparative energy input–output and financial analyses of greenhouse and open field vegetables production in West Java, Indonesia," Energy, Elsevier, vol. 53(C), pages 83-92.
    20. Mukherjee, Kankana, 2008. "Energy use efficiency in the Indian manufacturing sector: An interstate analysis," Energy Policy, Elsevier, vol. 36(2), pages 662-672, February.
    21. Zhao, Xiaoli & Lyon, Thomas P. & Wang, Feng & Song, Cui, 2012. "Why do electricity utilities cooperate with coal suppliers? A theoretical and empirical analysis from China," Energy Policy, Elsevier, vol. 46(C), pages 520-529.
    22. Pao, Hsiao-Tien, 2009. "Forecast of electricity consumption and economic growth in Taiwan by state space modeling," Energy, Elsevier, vol. 34(11), pages 1779-1791.
    23. Nässén, Jonas & Holmberg, John & Wadeskog, Anders & Nyman, Madeleine, 2007. "Direct and indirect energy use and carbon emissions in the production phase of buildings: An input–output analysis," Energy, Elsevier, vol. 32(9), pages 1593-1602.
    24. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    25. Sánchez, J.A. & Veganzones, C. & Martínez, S. & Blázquez, F. & Herrero, N. & Wilhelmi, J.R., 2008. "Dynamic model of wind energy conversion systems with variable speed synchronous generator and full-size power converter for large-scale power system stability studies," Renewable Energy, Elsevier, vol. 33(6), pages 1186-1198.
    26. Noel Alter & Shabib Haider Syed, 2011. "An Empirical Analysis of Electricity Demand in Pakistan," International Journal of Energy Economics and Policy, Econjournals, vol. 1(4), pages 116-139.
    27. Atakhanova, Zauresh & Howie, Peter, 2007. "Electricity demand in Kazakhstan," Energy Policy, Elsevier, vol. 35(7), pages 3729-3743, July.
    28. Manfren, Massimiliano & Aste, Niccolò & Moshksar, Reza, 2013. "Calibration and uncertainty analysis for computer models – A meta-model based approach for integrated building energy simulation," Applied Energy, Elsevier, vol. 103(C), pages 627-641.
    29. Trink, Thomas & Schmid, Christoph & Schinko, Thomas & Steininger, Karl W. & Loibnegger, Thomas & Kettner, Claudia & Pack, Alexandra & Töglhofer, Christoph, 2010. "Regional economic impacts of biomass based energy service use: A comparison across crops and technologies for East Styria, Austria," Energy Policy, Elsevier, vol. 38(10), pages 5912-5926, October.
    30. Tianshu CHU & Fereidun FESHARAKI & Kang WU, 2006. "China's Energy in Transition: Regional and Global Implications," Asian Economic Policy Review, Japan Center for Economic Research, vol. 1(1), pages 134-152, June.
    31. Hasanbeigi, Ali & Menke, Christoph & Therdyothin, Apichit, 2010. "The use of conservation supply curves in energy policy and economic analysis: The case study of Thai cement industry," Energy Policy, Elsevier, vol. 38(1), pages 392-405, January.
    32. Yuan, Chaoqing & Liu, Sifeng & Wu, Junlong, 2009. "Research on energy-saving effect of technological progress based on Cobb-Douglas production function," Energy Policy, Elsevier, vol. 37(8), pages 2842-2846, August.
    33. Dai, Hancheng & Masui, Toshihiko & Matsuoka, Yuzuru & Fujimori, Shinichiro, 2011. "Assessment of China's climate commitment and non-fossil energy plan towards 2020 using hybrid AIM/CGE model," Energy Policy, Elsevier, vol. 39(5), pages 2875-2887, May.
    34. David F. Hendry & Katarina Juselius, 2001. "Explaining Cointegration Analysis: Part II," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 75-120.
    35. Martinsen, Thomas, 2011. "Introducing technology learning for energy technologies in a national CGE model through soft links to global and national energy models," Energy Policy, Elsevier, vol. 39(6), pages 3327-3336, June.
    36. Feng, Taiwen & Sun, Linyan & Zhang, Ying, 2009. "The relationship between energy consumption structure, economic structure and energy intensity in China," Energy Policy, Elsevier, vol. 37(12), pages 5475-5483, December.
    37. Belloumi, Mounir, 2009. "Energy consumption and GDP in Tunisia: Cointegration and causality analysis," Energy Policy, Elsevier, vol. 37(7), pages 2745-2753, July.
    38. Pacudan, Romeo & de Guzman, Elaine, 2002. "Impact of energy efficiency policy to productive efficiency of electricity distribution industry in the Philippines," Energy Economics, Elsevier, vol. 24(1), pages 41-54, January.
    39. Ghosh, Sajal, 2006. "Future demand of petroleum products in India," Energy Policy, Elsevier, vol. 34(15), pages 2032-2037, October.
    40. Hondroyiannis, George, 2004. "Estimating residential demand for electricity in Greece," Energy Economics, Elsevier, vol. 26(3), pages 319-334, May.
    41. Lin, Boqiang & Zhang, Li & Wu, Ya, 2012. "Evaluation of electricity saving potential in China's chemical industry based on cointegration," Energy Policy, Elsevier, vol. 44(C), pages 320-330.
    42. Lu, Chuanyi & Zhang, Xiliang & He, Jiankun, 2010. "A CGE analysis to study the impacts of energy investment on economic growth and carbon dioxide emission: A case of Shaanxi Province in western China," Energy, Elsevier, vol. 35(11), pages 4319-4327.
    43. Jean Bosco Sabuhoro & Bruno Larue, 1997. "The market efficiency hypothesis: the case of coffee and cocoa futures," Agricultural Economics, International Association of Agricultural Economists, vol. 16(3), pages 171-184, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Boqiang & Chen, Yu & Zhang, Guoliang, 2018. "Impact of technological progress on China's textile industry and future energy saving potential forecast," Energy, Elsevier, vol. 161(C), pages 859-869.
    2. Yue, Qiang & Wang, Heming & Gao, Chengkang & Du, Tao & Liu, Liying & Lu, Zhongwu, 2015. "Resources saving and emissions reduction of the aluminum industry in China," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 68-75.
    3. Tian, Shuoshuo & Di, Yuezhong & Dai, Min & Chen, Weiqiang & Zhang, Qi, 2022. "Comprehensive assessment of energy conservation and CO2 emission reduction in future aluminum supply chain," Applied Energy, Elsevier, vol. 305(C).
    4. Lin, Boqiang & Long, Houyin, 2014. "How to promote energy conservation in China’s chemical industry," Energy Policy, Elsevier, vol. 73(C), pages 93-102.
    5. Lin, Boqiang & Chen, Yu, 2020. "Transportation infrastructure and efficient energy services: A perspective of China's manufacturing industry," Energy Economics, Elsevier, vol. 89(C).
    6. Shao, Yanmin, 2017. "Analysis of energy savings potential of China's nonferrous metals industry," Resources, Conservation & Recycling, Elsevier, vol. 117(PA), pages 25-33.
    7. Lin, Boqiang & Du, Zhili, 2017. "Promoting energy conservation in China's metallurgy industry," Energy Policy, Elsevier, vol. 104(C), pages 285-294.
    8. Lin, Boqiang & Wang, Xiaolei, 2014. "Exploring energy efficiency in China׳s iron and steel industry: A stochastic frontier approach," Energy Policy, Elsevier, vol. 72(C), pages 87-96.
    9. Lin, Boqiang & Wang, Ailun, 2015. "Estimating energy conservation potential in China's commercial sector," Energy, Elsevier, vol. 82(C), pages 147-156.
    10. Li, Ke & Lin, Boqiang, 2015. "The improvement gap in energy intensity: Analysis of China's thirty provincial regions using the improved DEA (data envelopment analysis) model," Energy, Elsevier, vol. 84(C), pages 589-599.
    11. Lin, Boqiang & Zhao, Hongli, 2016. "Technological progress and energy rebound effect in China׳s textile industry: Evidence and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 173-181.
    12. Gómez, Antonio & Dopazo, César & Fueyo, Norberto, 2014. "The causes of the high energy intensity of the Kazakh economy: A characterization of its energy system," Energy, Elsevier, vol. 71(C), pages 556-568.
    13. Zhong, Mei-Rui & Xiao, Shun-Li & Zou, Han & Zhang, Yi-Jun & Song, Yi, 2021. "The effects of technical change on carbon intensity in China’s non-ferrous metal industry," Resources Policy, Elsevier, vol. 73(C).
    14. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Electricity demand and conservation potential in the Chinese nonmetallic mineral products industry," Energy Policy, Elsevier, vol. 68(C), pages 243-253.
    15. Lin, Boqiang & Chen, Yu, 2020. "Will land transport infrastructure affect the energy and carbon dioxide emissions performance of China’s manufacturing industry?," Applied Energy, Elsevier, vol. 260(C).
    16. Li, Ke & Yuan, Weihong, 2021. "The nexus between industrial growth and electricity consumption in China – New evidence from a quantile-on-quantile approach," Energy, Elsevier, vol. 231(C).
    17. Zha, Jianping & Tan, Ting & Fan, Rong & Xu, Han & Ma, Siqi, 2020. "How to reduce energy intensity to achieve sustainable development of China's transport sector? A cross-regional comparison analysis," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    18. Fei, Rilong & Lin, Boqiang, 2017. "Estimates of energy demand and energy saving potential in China's agricultural sector," Energy, Elsevier, vol. 135(C), pages 865-875.
    19. Boqiang Lin & Weisheng Liu, 2017. "Scenario Prediction of Energy Consumption and CO 2 Emissions in China’s Machinery Industry," Sustainability, MDPI, vol. 9(1), pages 1-18, January.
    20. Lin, Boqiang & Chen, Xing, 2020. "How technological progress affects input substitution and energy efficiency in China: A case of the non-ferrous metals industry," Energy, Elsevier, vol. 206(C).
    21. Lin, Boqiang & Long, Houyin, 2014. "Promoting carbon emissions reduction in China's chemical process industry," Energy, Elsevier, vol. 77(C), pages 822-830.
    22. Lin, Boqiang & Moubarak, Mohamed & Ouyang, Xiaoling, 2014. "Carbon dioxide emissions and growth of the manufacturing sector: Evidence for China," Energy, Elsevier, vol. 76(C), pages 830-837.
    23. Guoxing Zhang & Zhenhua Zhang & Xiulin Gao & Lean Yu & Shouyang Wang & Yingluo Wang, 2017. "Impact of Energy Conservation and Emissions Reduction Policy Means Coordination on Economic Growth: Quantitative Evidence from China," Sustainability, MDPI, vol. 9(5), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Boqiang & Zhang, Li & Wu, Ya, 2012. "Evaluation of electricity saving potential in China's chemical industry based on cointegration," Energy Policy, Elsevier, vol. 44(C), pages 320-330.
    2. Wang, Xiaolei & Lin, Boqiang, 2016. "How to reduce CO2 emissions in China׳s iron and steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1496-1505.
    3. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Electricity demand and conservation potential in the Chinese nonmetallic mineral products industry," Energy Policy, Elsevier, vol. 68(C), pages 243-253.
    4. Lin, Boqiang & Wang, Xiaolei, 2014. "Promoting energy conservation in China's iron & steel sector," Energy, Elsevier, vol. 73(C), pages 465-474.
    5. Lin, Boqiang & Chen, Yu & Zhang, Guoliang, 2018. "Impact of technological progress on China's textile industry and future energy saving potential forecast," Energy, Elsevier, vol. 161(C), pages 859-869.
    6. Gang Du & Chuanwang Sun, 2015. "Determinants of Electricity Demand in Nonmetallic Mineral Products Industry: Evidence from a Comparative Study of Japan and China," Sustainability, MDPI, vol. 7(6), pages 1-25, June.
    7. Lin, Boqiang & Du, Zhili, 2017. "Promoting energy conservation in China's metallurgy industry," Energy Policy, Elsevier, vol. 104(C), pages 285-294.
    8. Lin, Boqiang & Moubarak, Mohamed, 2014. "Estimation of energy saving potential in China's paper industry," Energy, Elsevier, vol. 65(C), pages 182-189.
    9. Lin, Boqiang & Moubarak, Mohamed, 2014. "Mitigation potential of carbon dioxide emissions in the Chinese textile industry," Applied Energy, Elsevier, vol. 113(C), pages 781-787.
    10. Lin, Boqiang & Wu, Ya & Zhang, Li, 2012. "Electricity saving potential of the power generation industry in China," Energy, Elsevier, vol. 40(1), pages 307-316.
    11. Lin, Boqiang & Xu, Lin, 2015. "Energy conservation of electrolytic aluminum industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 676-686.
    12. Zou, Gao Lu, 2012. "The long-term relationships among China's energy consumption sources and adjustments to its renewable energy policy," Energy Policy, Elsevier, vol. 47(C), pages 456-467.
    13. Lin, Boqiang & Wu, Ya & Zhang, Li, 2011. "Estimates of the potential for energy conservation in the Chinese steel industry," Energy Policy, Elsevier, vol. 39(6), pages 3680-3689, June.
    14. Lin, Boqiang & Long, Houyin, 2014. "Promoting carbon emissions reduction in China's chemical process industry," Energy, Elsevier, vol. 77(C), pages 822-830.
    15. Eleni Constantinou & Avo Kazandjian & Georgios P. Kouretas & Vera Tahmazian, 2008. "Common Stochastic Trends Among The Cyprus Stock Exchange And The Ase, Lse And Nyse," Bulletin of Economic Research, Wiley Blackwell, vol. 60(4), pages 327-349, October.
    16. Kühl, Michael, 2010. "Bivariate cointegration of major exchange rates, cross-market efficiency and the introduction of the Euro," Journal of Economics and Business, Elsevier, vol. 62(1), pages 1-19, January.
    17. Kirstin Hubrich & Helmut Lutkepohl & Pentti Saikkonen, 2001. "A Review Of Systems Cointegration Tests," Econometric Reviews, Taylor & Francis Journals, vol. 20(3), pages 247-318.
    18. Xu, Bin & Lin, Boqiang, 2016. "Assessing CO2 emissions in China’s iron and steel industry: A dynamic vector autoregression model," Applied Energy, Elsevier, vol. 161(C), pages 375-386.
    19. Boqiang Lin & Zihan Zhang & Fei Ge, 2017. "Energy Conservation in China’s Cement Industry," Sustainability, MDPI, vol. 9(4), pages 1-17, April.
    20. Gomez, Miguel I. & Koerner, Julia, 2009. "Do retail coffee prices increase faster than they fall? Asymmetric price transmission in France, Germany and the United States," Working Papers 55930, Cornell University, Department of Applied Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:60:y:2013:i:c:p:558-568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.