IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Is there a causal relation between ethanol innovation and the market characteristics of fuels in Brazil?

  • de Freitas, Luciano Charlita
  • Kaneko, Shinji

This study examines whether a causal relation exists between ethanol related innovation and fuel market variables in Brazil. Patent counts were used as proxy for innovation and assessed market variables include ethanol consumption and price, and gasoline price. The study refers to the period 1975–2008. Empirical evidence is formulated with an Autoregressive Distributed Lag (ARDL) model for cointegration and the causality is examined with a multivariate Granger causality test. The results demonstrate a potential causal relation between ethanol innovation and ethanol consumption, evidencing a unidirectional relation from ethanol consumption to patent registers in the studied period. Such a relation indicates that increments in ethanol consumption can potentially stimulate innovation in the sector. Moreover, the ethanol price and the cross-effect of gasoline price have an indirect effect on ethanol innovation. Several questions are raised regarding the yet to be determined factors driving innovation in the sector. Further studies focused on nonmarket aspects, including policy factors, subsidies and international technology spillovers, would potentially elucidate several unanswered questions concerning ethanol innovation in Brazil.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Ecological Economics.

Volume (Year): 74 (2012)
Issue (Month): C ()
Pages: 161-168

in new window

Handle: RePEc:eee:ecolec:v:74:y:2012:i:c:p:161-168
DOI: 10.1016/j.ecolecon.2011.12.013
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Gerlagh, Reyer, 2008. "A climate-change policy induced shift from innovations in carbon-energy production to carbon-energy savings," Energy Economics, Elsevier, vol. 30(2), pages 425-448, March.
  2. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
  3. Crago, Christine Lasco & Khanna, Madhu & Barton, Jason & Giuliani, Eduardo & Amaral, Weber, 2010. "Competitiveness of Brazilian Sugarcane Ethanol Compared to US Corn Ethanol," 2010 Annual Meeting, July 25-27, 2010, Denver, Colorado 60895, Agricultural and Applied Economics Association.
  4. Jakeman, Guy & Hanslow, Kevin & Hinchy, Mike & Fisher, Brian S. & Woffenden, Kate, 2004. "Induced innovations and climate change policy," Energy Economics, Elsevier, vol. 26(6), pages 937-960, November.
  5. Kumar Narayan, Paresh & Singh, Baljeet, 2007. "The electricity consumption and GDP nexus for the Fiji Islands," Energy Economics, Elsevier, vol. 29(6), pages 1141-1150, November.
  6. Paresh Kumar Narayan, 2005. "The saving and investment nexus for China: evidence from cointegration tests," Applied Economics, Taylor & Francis Journals, vol. 37(17), pages 1979-1990.
  7. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
  8. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
  9. van Zon, Adriaan & Yetkiner, I. Hakan, 2003. "An endogenous growth model with embodied energy-saving technical change," Resource and Energy Economics, Elsevier, vol. 25(1), pages 81-103, February.
  10. Engle, Robert F & Granger, Clive W J, 1987. "Co-integration and Error Correction: Representation, Estimation, and Testing," Econometrica, Econometric Society, vol. 55(2), pages 251-76, March.
  11. Foxon, T. J. & Gross, R. & Chase, A. & Howes, J. & Arnall, A. & Anderson, D., 2005. "UK innovation systems for new and renewable energy technologies: drivers, barriers and systems failures," Energy Policy, Elsevier, vol. 33(16), pages 2123-2137, November.
  12. Pizer, William A. & Popp, David, 2007. "Endogenizing Technological Change: Matching Empirical Evidence to Modeling Needs," Discussion Papers dp-07-11, Resources For the Future.
  13. Granger, C. W. J., 1980. "Testing for causality : A personal viewpoint," Journal of Economic Dynamics and Control, Elsevier, vol. 2(1), pages 329-352, May.
  14. Paul M Romer, 1999. "Endogenous Technological Change," Levine's Working Paper Archive 2135, David K. Levine.
  15. Furtado, André Tosi & Scandiffio, Mirna Ivonne Gaya & Cortez, Luis Augusto Barbosa, 2011. "The Brazilian sugarcane innovation system," Energy Policy, Elsevier, vol. 39(1), pages 156-166, January.
  16. Lean, Hooi Hooi & Smyth, Russell, 2010. "Multivariate Granger causality between electricity generation, exports, prices and GDP in Malaysia," Energy, Elsevier, vol. 35(9), pages 3640-3648.
  17. Verdolini, Elena & Galeotti, Marzio, 2011. "At home and abroad: An empirical analysis of innovation and diffusion in energy technologies," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 119-134, March.
  18. Liu, Yucan & Shumway, C. Richard, 2009. "Induced innovation and marginal cost of new technology," Economics Letters, Elsevier, vol. 105(1), pages 106-109, October.
  19. Goldemberg, José & Coelho, Suani Teixeira & Guardabassi, Patricia, 2008. "The sustainability of ethanol production from sugarcane," Energy Policy, Elsevier, vol. 36(6), pages 2086-2097, June.
  20. Lichtenberg, Frank R., 1986. "Energy prices and induced innovation," Research Policy, Elsevier, vol. 15(2), pages 67-75, April.
  21. Eric Zivot & Donald W.K. Andrews, 1990. "Further Evidence on the Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Cowles Foundation Discussion Papers 944, Cowles Foundation for Research in Economics, Yale University.
  22. Luo, Lin & van der Voet, Ester & Huppes, Gjalt, 2009. "Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1613-1619, August.
  23. Narayan, Paresh Kumar & Smyth, Russell, 2005. "Electricity consumption, employment and real income in Australia evidence from multivariate Granger causality tests," Energy Policy, Elsevier, vol. 33(9), pages 1109-1116, June.
  24. Rico, Julieta A. Puerto & Mercedes, Sonia S.P. & Sauer, Ildo L., 2010. "Genesis and consolidation of the Brazilian bioethanol: A review of policies and incentive mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1874-1887, September.
  25. Borrell, Brent, 1991. "How a change in Brazil's sugar policies would affect the world sugar market," Policy Research Working Paper Series 642, The World Bank.
  26. Schilling, Melissa A. & Esmundo, Melissa, 2009. "Technology S-curves in renewable energy alternatives: Analysis and implications for industry and government," Energy Policy, Elsevier, vol. 37(5), pages 1767-1781, May.
  27. Sagar, A. D. & Holdren, J. P., 2002. "Assessing the global energy innovation system: some key issues," Energy Policy, Elsevier, vol. 30(6), pages 465-469, May.
  28. Warr, B.S. & Ayres, R.U., 2010. "Evidence of causality between the quantity and quality of energy consumption and economic growth," Energy, Elsevier, vol. 35(4), pages 1688-1693.
  29. Shum, Kwok L. & Watanabe, Chihiro, 2009. "An innovation management approach for renewable energy deployment--the case of solar photovoltaic (PV) technology," Energy Policy, Elsevier, vol. 37(9), pages 3535-3544, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:74:y:2012:i:c:p:161-168. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shamier, Wendy)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.