IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v151y2017icp47-60.html
   My bibliography  Save this article

Farm-level bio-economic modeling of water and nitrogen use: Calibrating yield response functions with limited data

Author

Listed:
  • Humblot, Pierre
  • Jayet, Pierre-Alain
  • Petsakos, Athanasios

Abstract

Integrating agronomic information into economic models is required for simulating farming systems so as to better determine how agriculture can adapt to a continuously changing global economic and physical environment. In this respect, farm level mathematical programming bio-economic models can provide valuable insights for examining current and future pressures on resource use. Although a necessary condition for the effective use of such models is their calibration against observed data on input use, this information may not always be available, particularly at higher geographical scales. Imperfect or missing input markets pose an additional challenge to modelers. To overcome these difficulties, we present a theoretical framework for calibrating water-nitrogen yield response functions, which are used to represent the bio-physical aspects of crop production in bio-economic farm models at the European Union level. The method is based on the simulation results of an agronomic model, while the calibration criterion derives from the first-order conditions for farmers' profit maximization and utilizes all available information from the Farm Accountancy Data Network. The method is tested on maize-producing farms in two regions in France.

Suggested Citation

  • Humblot, Pierre & Jayet, Pierre-Alain & Petsakos, Athanasios, 2017. "Farm-level bio-economic modeling of water and nitrogen use: Calibrating yield response functions with limited data," Agricultural Systems, Elsevier, vol. 151(C), pages 47-60.
  • Handle: RePEc:eee:agisys:v:151:y:2017:i:c:p:47-60
    DOI: 10.1016/j.agsy.2016.11.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X16307740
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruben, Ruerd & Moll, Henk & Kuyvenhoven, Arie, 1998. "Integrating agricultural research and policy analysis: analytical framework and policy applications for bio-economic modelling," Agricultural Systems, Elsevier, vol. 58(3), pages 331-349, November.
    2. Llewelyn, Richard V. & Featherstone, Allen M., 1997. "A comparison of crop production functions using simulated data for irrigated corn in western Kansas," Agricultural Systems, Elsevier, vol. 54(4), pages 521-538, August.
    3. Taylor, Michael L. & Adams, Richard M. & Miller, Stanley F., 1992. "Farm-Level Response To Agricultural Effluent Control Strategies: The Case Of The Willamette Valley," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 17(01), July.
    4. Dono, Gabriele & Giraldo, Luca & Severini, Simone, 2010. "Pricing of irrigation water under alternative charging methods: Possible shortcomings of a volumetric approach," Agricultural Water Management, Elsevier, vol. 97(11), pages 1795-1805, November.
    5. Semaan, Josephine & Flichman, Guillermo & Scardigno, Alessandra & Steduto, Pasquale, 2007. "Analysis of nitrate pollution control policies in the irrigated agriculture of Apulia Region (Southern Italy): A bio-economic modelling approach," Agricultural Systems, Elsevier, vol. 94(2), pages 357-367, May.
    6. Gomez-Limon, Jose A. & Riesgo, Laura, 2004. "Irrigation water pricing: differential impacts on irrigated farms," Agricultural Economics, Blackwell, vol. 31(1), pages 47-66, July.
    7. Donaldson, A. B. & Flichman, G. & Webster, J. P. G., 1995. "Integrating agronomic and economic models for policy analysis at the farm level: The impact of CAP reform in two European regions," Agricultural Systems, Elsevier, vol. 48(2), pages 163-178.
    8. Dono, Gabriele & Mazzapicchio, Graziano, 2010. "Uncertain water supply in an irrigated Mediterranean area: An analysis of the possible economic impact of climate change on the farm sector," Agricultural Systems, Elsevier, vol. 103(6), pages 361-370, July.
    9. Godard, C. & Roger-Estrade, J. & Jayet, P.A. & Brisson, N. & Le Bas, C., 2008. "Use of available information at a European level to construct crop nitrogen response curves for the regions of the EU," Agricultural Systems, Elsevier, vol. 97(1-2), pages 68-82, April.
    10. Douglas M. Larson & Gloria E. Helfand & Brett W. House, 1996. "Second-Best Tax Policies to Reduce Nonpoint Source Pollution," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(4), pages 1108-1117.
    11. Garth Holloway, 2003. "An Old Problem Revisited-and Solved: Upton and Dalton's Linear Production Response: A Note," Journal of Agricultural Economics, Wiley Blackwell, vol. 54(3), pages 487-497.
    12. Nina Graveline & Pierre Mérel, 2014. "Intensive and extensive margin adjustments to water scarcity in France's Cereal Belt," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 41(5), pages 707-743.
    13. Cortignani, Raffaele & Severini, Simone, 2009. "Modeling farm-level adoption of deficit irrigation using Positive Mathematical Programming," Agricultural Water Management, Elsevier, vol. 96(12), pages 1785-1791, December.
    14. Christopher Ackello-Ogutu & Quirino Paris & William A. Williams, 1985. "Testing a von Liebig Crop Response Function against Polynomial Specifications," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 67(4), pages 873-880.
    15. Louhichi, Kamel & Kanellopoulos, Argyris & Janssen, Sander & Flichman, Guillermo & Blanco, Maria & Hengsdijk, Huib & Heckelei, Thomas & Berentsen, Paul & Lansink, Alfons Oude & Ittersum, Martin Van, 2010. "FSSIM, a bio-economic farm model for simulating the response of EU farming systems to agricultural and environmental policies," Agricultural Systems, Elsevier, vol. 103(8), pages 585-597, October.
    16. Michael D. Frank & Bruce R. Beattie & Mary E. Embleton, 1990. "A Comparison of Alternative Crop Response Models," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 72(3), pages 597-603.
    17. de Fraiture, Charlotte & Wichelns, Dennis, 2010. "Satisfying future water demands for agriculture," Agricultural Water Management, Elsevier, vol. 97(4), pages 502-511, April.
    18. Graveline, N. & Loubier, S. & Gleyses, G. & Rinaudo, J.-D., 2012. "Impact of farming on water resources: Assessing uncertainty with Monte Carlo simulations in a global change context," Agricultural Systems, Elsevier, vol. 108(C), pages 29-41.
    19. Belhouchette, Hatem & Louhichi, Kamel & Therond, Olivier & Mouratiadou, Ioanna & Wery, Jacques & Ittersum, Martin van & Flichman, Guillermo, 2011. "Assessing the impact of the Nitrate Directive on farming systems using a bio-economic modelling chain," Agricultural Systems, Elsevier, vol. 104(2), pages 135-145, February.
    20. Leclère, David & Jayet, Pierre-Alain & de Noblet-Ducoudré, Nathalie, 2013. "Farm-level Autonomous Adaptation of European Agricultural Supply to Climate Change," Ecological Economics, Elsevier, vol. 87(C), pages 1-14.
    21. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    22. Pierre Mérel & Fujin Yi & Juhwan Lee & Johan Six, 2014. "A Regional Bio-economic Model of Nitrogen Use in Cropping," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(1), pages 67-91.
    23. Bartolini, F. & Bazzani, G.M. & Gallerani, V. & Raggi, M. & Viaggi, D., 2007. "The impact of water and agriculture policy scenarios on irrigated farming systems in Italy: An analysis based on farm level multi-attribute linear programming models," Agricultural Systems, Elsevier, vol. 93(1-3), pages 90-114, March.
    24. Kampas, Athanasios & Petsakos, Athanasios & Rozakis, Stelios, 2012. "Price induced irrigation water saving: Unraveling conflicts and synergies between European agricultural and water policies for a Greek Water District," Agricultural Systems, Elsevier, vol. 113(C), pages 28-38.
    25. S De Cara & P-A Jayet, 2000. "Emissions of greenhouse gases from agriculture: the heterogeneity of abatement costs in France," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 27(3), pages 281-303, September.
    26. B. Brorsen & Francisca Richter, 2012. "Experimental designs for estimating plateau-type production functions and economically optimal input levels," Journal of Productivity Analysis, Springer, vol. 38(1), pages 45-52, August.
    27. Humblot, Pierre & Leconte-Demarsy, Delphine & Clerino, Paola & Szopa, Sophie & Castell, Jean-François & Jayet, Pierre-Alain, 2013. "Assessment of ozone impacts on farming systems: A bio-economic modeling approach applied to the widely diverse French case," Ecological Economics, Elsevier, vol. 85(C), pages 50-58.
    28. Medellín-Azuara, J. & Howitt, R.E. & Harou, J.J., 2012. "Predicting farmer responses to water pricing, rationing and subsidies assuming profit maximizing investment in irrigation technology," Agricultural Water Management, Elsevier, vol. 108(C), pages 73-82.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:ecolec:v:146:y:2018:i:c:p:334-346 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:151:y:2017:i:c:p:47-60. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/agsy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.