IDEAS home Printed from https://ideas.repec.org/p/ags/eaa120/109397.html
   My bibliography  Save this paper

Evaluating the efficiency of a N-input tax under different policy scenarios at different scales

Author

Listed:
  • Petsakos, Athanasios
  • Jayet, Pierre-Alain

Abstract

Nitrate pollution from agriculture is an important environmental problem, caused by the excessive use of inorganic fertilizers. The internalization of this externality, via a tax on mineral nitrogen, could lead to a second best solution, reducing nitrate emissions. Several authors suggest that a reduction in agricultural support could produce similar results. In this paper we examine the effects of a nitrogen levy on nitrate pollution from agriculture in northern France under two different policy scenarios corresponding to (i) the Agenda 2000 and (ii) the Luxembourg reform of 2003, including the 2006 arrangement. The analysis aims at revealing what synergies or conflicts are created between a fertilizer levy and the policy scenarios, with respect to nitrate pollution mitigation. The applied methodology is based on the coupling of the economic model AROPAj with the crop model STICS. For each policy scenario, a nitrogen tax is simulated, involving different tax levels up to 100% the input price. Results reveal that at higher tax levels the reformed CAP can lead to slightly greater nitrate reductions than Agenda 2000, while the opposite applies when the tax is low. A down-scaling method is then used for the spatial distribution of the outputs, allowing for a more detailed representation of the nitrate abatement effects of the N-tax at different geographical levels.

Suggested Citation

  • Petsakos, Athanasios & Jayet, Pierre-Alain, 2010. "Evaluating the efficiency of a N-input tax under different policy scenarios at different scales," 120th Seminar, September 2-4, 2010, Chania, Crete 109397, European Association of Agricultural Economists.
  • Handle: RePEc:ags:eaa120:109397
    DOI: 10.22004/ag.econ.109397
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/109397/files/Petsakos_Jayet.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Helfand, Gloria E. & Berck, Peter & Maull, Tim, 2003. "The theory of pollution policy," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 1, chapter 6, pages 249-303, Elsevier.
    2. Berntsen, J. & Petersen, B. M. & Jacobsen, B. H. & Olesen, J. E. & Hutchings, N. J., 2003. "Evaluating nitrogen taxation scenarios using the dynamic whole farm simulation model FASSET," Agricultural Systems, Elsevier, vol. 76(3), pages 817-839, June.
    3. Abler, David G & Shortle, James S, 1992. "Environmental and Farm Commodity Policy Linkages in the U.S. and the EC," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 19(2), pages 197-217.
    4. Spraggon, John, 2002. "Exogenous targeting instruments as a solution to group moral hazards," Journal of Public Economics, Elsevier, vol. 84(3), pages 427-456, June.
    5. James Shortle & David Abler & Richard Horan, 1998. "Research Issues in Nonpoint Pollution Control," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 11(3), pages 571-585, April.
    6. JunJie Wu & Bruce Babcock, 2001. "Spatial Heterogeneity and the Choice of Instruments to Control Nonpoint Pollution," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 18(2), pages 173-192, February.
    7. Llewelyn, Richard V. & Featherstone, Allen M., 1997. "A comparison of crop production functions using simulated data for irrigated corn in western Kansas," Agricultural Systems, Elsevier, vol. 54(4), pages 521-538, August.
    8. Stéphane Cara & Martin Houzé & Pierre-Alain Jayet, 2005. "Methane and Nitrous Oxide Emissions from Agriculture in the EU: A Spatial Assessment of Sources and Abatement Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 32(4), pages 551-583, December.
    9. Scott L. Johnson & Richard M. Adams & Gregory M. Perry, 1991. "The On-Farm Costs of Reducing Groundwater Pollution," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 73(4), pages 1063-1073.
    10. Mosnier, Claire & Ridier, Aude & Kphaliacos, Charilaos & Carpy-Goulard, Françoise, 2009. "Economic and environmental impact of the CAP mid-term review on arable crop farming in South-western France," Ecological Economics, Elsevier, vol. 68(5), pages 1408-1416, March.
    11. Raja Chakir, 2009. "Spatial Downscaling of Agricultural Land-Use Data: An Econometric Approach Using Cross Entropy," Land Economics, University of Wisconsin Press, vol. 85(2), pages 238-251.
    12. François Cochard & Marc Willinger & Anastasios Xepapadeas, 2005. "Efficiency of Nonpoint Source Pollution Instruments: An Experimental Study," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 30(4), pages 393-422, April.
    13. S De Cara & P-A Jayet, 2000. "Emissions of greenhouse gases from agriculture: the heterogeneity of abatement costs in France," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 27(3), pages 281-303, September.
    14. Roger Claassen & Richard Horan, 2001. "Uniform and Non-Uniform Second-Best Input Taxes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 19(1), pages 1-22, May.
    15. Golan, Amos & Judge, George G. & Miller, Douglas, 1996. "Maximum Entropy Econometrics," Staff General Research Papers Archive 1488, Iowa State University, Department of Economics.
    16. Schmid, Erwin & Sinabell, Franz & Hofreither, Markus F., 2007. "Phasing out of environmentally harmful subsidies: Consequences of the 2003 CAP reform," Ecological Economics, Elsevier, vol. 60(3), pages 596-604, January.
    17. Xepapadeas, A. P., 1991. "Environmental policy under imperfect information: Incentives and moral hazard," Journal of Environmental Economics and Management, Elsevier, vol. 20(2), pages 113-126, March.
    18. Wier, Mette & Andersen, Johnny M. & Jensen, Jorgen D. & Jensen, Thomas C., 2002. "The EU's Agenda 2000 reform for the agricultural sector: environmental and economic effects in Denmark," Ecological Economics, Elsevier, vol. 41(2), pages 345-359, May.
    19. Hanley, Nick, 1990. "The Economics of Nitrate Pollution," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 17(2), pages 129-151.
    20. Cabe, Richard & Herriges, Joseph A., 1992. "The regulation of non-point-source pollution under imperfect and asymmetric information," Journal of Environmental Economics and Management, Elsevier, vol. 22(2), pages 134-146, March.
    21. Semaan, Josephine & Flichman, Guillermo & Scardigno, Alessandra & Steduto, Pasquale, 2007. "Analysis of nitrate pollution control policies in the irrigated agriculture of Apulia Region (Southern Italy): A bio-economic modelling approach," Agricultural Systems, Elsevier, vol. 94(2), pages 357-367, May.
    22. Douglas M. Larson & Gloria E. Helfand & Brett W. House, 1996. "Second-Best Tax Policies to Reduce Nonpoint Source Pollution," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(4), pages 1108-1117.
    23. Renan-Ulrich Goetz & Hansjörg Schmid & Bernard Lehmann, 2006. "Determining the economic gains from regulation at the extensive and intensive margins," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 33(1), pages 1-30, March.
    24. Nick Hanley, 1990. "The Economics of Nitrate Pollution Control in the UK," Working Papers Series 90/5, University of Stirling, Division of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parisa Aghajanzadeh-Darzi & Pierre-Alain Jayet & Athanasios Petsakos, 2017. "Improvement of a Bio-Economic Mathematical Programming Model in the Case of On-Farm Source Inputs and Outputs," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 15(3), pages 489-508, September.
    2. Humblot, Pierre & Jayet, Pierre-Alain & Petsakos, Athanasios, 2017. "Farm-level bio-economic modeling of water and nitrogen use: Calibrating yield response functions with limited data," Agricultural Systems, Elsevier, vol. 151(C), pages 47-60.
    3. Cyril Bourgeois & Pierre-Alain Jayet & Florence Habets & Pascal Viennot, 2018. "Estimating the Marginal Social Value of Agriculturally Driven Nitrate Concentrations in an Aquifer: A Combined Theoretical-Applied Approach," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-30, January.
    4. Fradj, Nosra Ben & Bourgeois, Cyril & Clodic, Melissa & Jayet, Pierre-Alain, 2011. "Limiting the Nitrogen Losses by N-tax and Bioenergy Support: A Quantitative Analysis of Environmental Policy Mix Impacts in the North of France," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114267, European Association of Agricultural Economists.
    5. Whittaker, Gerald & Färe, Rolf & Grosskopf, Shawna & Barnhart, Bradley & Bostian, Moriah & Mueller-Warrant, George & Griffith, Stephen, 2017. "Spatial targeting of agri-environmental policy using bilevel evolutionary optimization," Omega, Elsevier, vol. 66(PA), pages 15-27.
    6. Anna Lungarska & Pierre-Alain Jayet, 2018. "Impact of Spatial Differentiation of Nitrogen Taxes on French Farms’ Compliance Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 69(1), pages 1-21, January.
    7. Chakir, Raja & Lungarska, Anna, 2015. "Agricultural land rents in land use models: a spatial econometric analysis," 150th Seminar, October 22-23, 2015, Edinburgh, Scotland 212641, European Association of Agricultural Economists.
    8. Pierre-Alain Jayet & Delphine Barberis & Pierre Humblot & Anna Lungarska, 2018. "Spatializing the results of a bioeconomic model on water demand for irrigation needs [Spatialisation de la demande en eau d’irrigation estimée par un modèle bioéconomique]," Post-Print hal-02617894, HAL.
    9. Fradj, Nosra Ben & Rozakis, Stelios & Jayet, Pierre-Alain, 2018. "Post 2020 CAP in Poland: An impact analysis," 162nd Seminar, April 26-27, 2018, Budapest, Hungary 273108, European Association of Agricultural Economists.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James Shortle & Richard D. Horan, 2013. "Policy Instruments for Water Quality Protection," Annual Review of Resource Economics, Annual Reviews, vol. 5(1), pages 111-138, June.
    2. Anastasios Xepapadeas, 2011. "The Economics of Non-Point-Source Pollution," Annual Review of Resource Economics, Annual Reviews, vol. 3(1), pages 355-373, October.
    3. Picazo-Tadeo, Andres J. & Reig-Martinez, Ernest, 2007. "Farmers' costs of environmental regulation: Reducing the consumption of nitrogen in citrus farming," Economic Modelling, Elsevier, vol. 24(2), pages 312-328, March.
    4. Suter, Jordan F. & Vossler, Christian A. & Poe, Gregory L., 2009. "Ambient-based pollution mechanisms: A comparison of homogeneous and heterogeneous groups of emitters," Ecological Economics, Elsevier, vol. 68(6), pages 1883-1892, April.
    5. James Shortle & Richard D. Horan, 2017. "Nutrient Pollution: A Wicked Challenge for Economic Instruments," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 1-39, April.
    6. François Cochard & Marc Willinger & Anastasios Xepapadeas, 2005. "Efficiency of Nonpoint Source Pollution Instruments: An Experimental Study," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 30(4), pages 393-422, April.
    7. Aftab, Ashar & Hanley, Nick & Baiocchi, Giovanni, 2010. "Integrated regulation of nonpoint pollution: Combining managerial controls and economic instruments under multiple environmental targets," Ecological Economics, Elsevier, vol. 70(1), pages 24-33, November.
    8. Marc Willinger & Nasreddine Ammar & Ahmed Ennasri, 2014. "Performance of the Ambient Tax: Does the Nature of the Damage Matter?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(3), pages 479-502, November.
    9. Humblot, Pierre & Jayet, Pierre-Alain & Petsakos, Athanasios, 2017. "Farm-level bio-economic modeling of water and nitrogen use: Calibrating yield response functions with limited data," Agricultural Systems, Elsevier, vol. 151(C), pages 47-60.
    10. Kritikos, Alexander S., 2004. "A penalty system to enforce policy measures under incomplete information," International Review of Law and Economics, Elsevier, vol. 24(3), pages 385-403, September.
    11. Jordan F. Suter & Kathleen Segerson & Christian A. Vossler & Gregory L. Poe, 2010. "Voluntary-Threat Approaches to Reduce Ambient Water Pollution," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 92(4), pages 1195-1213.
    12. Gaston Giordana & Marc Willinger, 2013. "Regulatory instruments for monitoring ambient pollution," Chapters, in: John A. List & Michael K. Price (ed.), Handbook on Experimental Economics and the Environment, chapter 7, pages 193-232, Edward Elgar Publishing.
    13. François Cochard & Marc Willinger & Anastasios Xepapadeas, 2002. "Efficiency of Nonpoint Source Pollution Instruments with Externality Among Polluters:An Experimental Study," Working Papers of BETA 2002-20, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    14. Lungarska, Anna & Chakir, Raja, 2018. "Climate-induced Land Use Change in France: Impacts of Agricultural Adaptation and Climate Change Mitigation," Ecological Economics, Elsevier, vol. 147(C), pages 134-154.
    15. Colson, Gregory & Menapace, Luisa, 2012. "Multiple receptor ambient monitoring and firm compliance with environmental taxes under budget and target driven regulatory missions," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 390-401.
    16. Larry Karp, 2005. "Nonpoint Source Pollution Taxes and Excessive Tax Burden," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 31(2), pages 229-251, June.
    17. COCHARD François & ROZAN Anne & SPAETER Sandrine, 2006. "Prevention and Compensation of Muddy Flows: Some Economic Insights," LERNA Working Papers 06.24.217, LERNA, University of Toulouse.
    18. Viaggi, Davide & Raggi, Meri & Gomez y Paloma, Sergio, 2011. "Farm-household investment behaviour and the CAP decoupling: Methodological issues in assessing policy impacts," Journal of Policy Modeling, Elsevier, vol. 33(1), pages 127-145, January.
    19. Hamet Sarr & Mohamed Bchir & Francois Cochard & Anne Rozan, 2016. "Nonpoint source pollution: An experimental investigation of the Average Pigouvian Tax," Working Papers hal-01375078, HAL.
    20. Hamet SARR & Mohamed Ali BCHIR & François COCHARD & Anne ROZAN, 2016. "Nonpoint source pollution: An experimental investigation of the Average Pigouvian Tax," Working Papers 2016-05, CRESE.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:eaa120:109397. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search). General contact details of provider: https://edirc.repec.org/data/eaaeeea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.