IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v97y2008i1-2p68-82.html
   My bibliography  Save this article

Use of available information at a European level to construct crop nitrogen response curves for the regions of the EU

Author

Listed:
  • Godard, C.
  • Roger-Estrade, J.
  • Jayet, P.A.
  • Brisson, N.
  • Le Bas, C.

Abstract

Nowadays European agriculture is evolving in a context where policy-making and environmental concerns play a key role. To better assess agro-environmental policies, the AROPAj agricultural supply model needs to take into account the technical characteristics of crop management for different farms. A method to build up specific relationships between yield and nitrogen fertilization that takes into account agronomic techniques is proposed in this paper. The nitrogen response curve is based on an exponential function that integrates economic properties consistently from an agronomic point of view. In AROPAj, individual production systems (farm types) do not have a given location within a specified region and in databases technical information is scarce. The method involves determining technical and physical characteristics, inputs that allow the STICS crop model to assess the yield response to nitrogen of each crop on every farm type. From this information, a nitrogen response curve can be drawn up for each crop of each one of the farms. It can take into account both nitrogen from purchased fertilizer and nitrogen from animal effluents produced on farm. The method was designed to be adaptable to any European region, and tests carried out on two French regions covering a wide range of situations (crops, soils, climates and techniques) showed it was able to cope with varying prices and environments. The agronomic consistency of STICS inputs and curve shapes was also checked. When incorporated into the AROPAj economic model, the response curves can be used to render farms more sensitive to agricultural policy scenarios, by allowing their optimal fertilization level to be adjusted.

Suggested Citation

  • Godard, C. & Roger-Estrade, J. & Jayet, P.A. & Brisson, N. & Le Bas, C., 2008. "Use of available information at a European level to construct crop nitrogen response curves for the regions of the EU," Agricultural Systems, Elsevier, vol. 97(1-2), pages 68-82, April.
  • Handle: RePEc:eee:agisys:v:97:y:2008:i:1-2:p:68-82
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308-521X(07)00135-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Llewelyn, Richard V. & Featherstone, Allen M., 1997. "A comparison of crop production functions using simulated data for irrigated corn in western Kansas," Agricultural Systems, Elsevier, vol. 54(4), pages 521-538, August.
    2. Stéphane Cara & Martin Houzé & Pierre-Alain Jayet, 2005. "Methane and Nitrous Oxide Emissions from Agriculture in the EU: A Spatial Assessment of Sources and Abatement Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 32(4), pages 551-583, December.
    3. Arfini, Filippo, 2001. "Mathematical Programming Models Employed In The Analysis Of The Common Agriculture Policy," Working Papers 14803, National Institute of Agricultural Economics, Italy - INEA, Osservatorio Sulle Politiche Agricole dell'UE.
    4. S De Cara & P-A Jayet, 2000. "Emissions of greenhouse gases from agriculture: the heterogeneity of abatement costs in France," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 27(3), pages 281-303, September.
    5. Donaldson, A. B. & Flichman, G. & Webster, J. P. G., 1995. "Integrating agronomic and economic models for policy analysis at the farm level: The impact of CAP reform in two European regions," Agricultural Systems, Elsevier, vol. 48(2), pages 163-178.
    6. Marsden, James R & Pingry, David E, 1986. "Engineering Production Functions and the Testing of Quantitative Economic Hypotheses," Economica, London School of Economics and Political Science, vol. 53(212), pages 533-534, November.
    7. Christopher Ackello-Ogutu & Quirino Paris & William A. Williams, 1985. "Testing a von Liebig Crop Response Function against Polynomial Specifications," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 67(4), pages 873-880.
    8. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    9. Bouman, B. A. M. & van Keulen, H. & van Laar, H. H. & Rabbinge, R., 1996. "The `School of de Wit' crop growth simulation models: A pedigree and historical overview," Agricultural Systems, Elsevier, vol. 52(2-3), pages 171-198.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Humblot, Pierre & Jayet, Pierre-Alain & Petsakos, Athanasios, 2017. "Farm-level bio-economic modeling of water and nitrogen use: Calibrating yield response functions with limited data," Agricultural Systems, Elsevier, vol. 151(C), pages 47-60.
    2. Ben Fradj, Nosra & Jayet, Pierre Alain & Rozakis, Stelios & Georganta, Eleni & Jędrejek, Anna, 2020. "Contribution of agricultural systems to the bioeconomy in Poland: Integration of willow in the context of a stylised CAP diversification," Land Use Policy, Elsevier, vol. 99(C).
    3. Viaggi, Davide & Raggi, Meri & Gomez y Paloma, Sergio, 2011. "Farm-household investment behaviour and the CAP decoupling: Methodological issues in assessing policy impacts," Journal of Policy Modeling, Elsevier, vol. 33(1), pages 127-145, January.
    4. Garnache, Cloé & Mérel, Pierre R. & Lee, Juhwan & Six, Johan, 2017. "The social costs of second-best policies: Evidence from agricultural GHG mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 39-73.
    5. Anna Lungarska & Pierre-Alain Jayet, 2018. "Impact of Spatial Differentiation of Nitrogen Taxes on French Farms’ Compliance Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 69(1), pages 1-21, January.
    6. Leclère, David & Jayet, Pierre-Alain & de Noblet-Ducoudré, Nathalie, 2013. "Farm-level Autonomous Adaptation of European Agricultural Supply to Climate Change," Ecological Economics, Elsevier, vol. 87(C), pages 1-14.
    7. Lungarska, Anna & Chakir, Raja, 2018. "Climate-induced Land Use Change in France: Impacts of Agricultural Adaptation and Climate Change Mitigation," Ecological Economics, Elsevier, vol. 147(C), pages 134-154.
    8. Menozzi, Davide & Fioravanzi, Martina & Donati, Michele, 2015. "Farmer’s motivation to adopt sustainable agricultural practices," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 4(2), pages 1-23, August.
    9. Reidsma, Pytrik & Janssen, Sander & Jansen, Jacques & van Ittersum, Martin K., 2018. "On the development and use of farm models for policy impact assessment in the European Union – A review," Agricultural Systems, Elsevier, vol. 159(C), pages 111-125.
    10. Jayet, Pierre-Alain & Petel, Elvire, 2015. "Economic valuation of the nitrogen content of urban organic residue by the agricultural sector," Ecological Economics, Elsevier, vol. 120(C), pages 272-281.
    11. Finger, Robert & Hediger, Werner, 2007. "The Application of Robust Regression to a Production Function Comparison – the Example of Swiss Corn," MPRA Paper 4740, University Library of Munich, Germany.
    12. Humblot, Pierre & Leconte-Demarsy, Delphine & Clerino, Paola & Szopa, Sophie & Castell, Jean-François & Jayet, Pierre-Alain, 2013. "Assessment of ozone impacts on farming systems: A bio-economic modeling approach applied to the widely diverse French case," Ecological Economics, Elsevier, vol. 85(C), pages 50-58.
    13. Garnache, Cloe & Merel, Pierre R. & Lee, Juhwan & Six, Johan, 2014. "Markets for Agricultural Greenhouse Gas Offsets: The Role of Policy Design on Abatement Efficiency," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170718, Agricultural and Applied Economics Association.
    14. Lelyon, Baptiste & Chatelier, Vincent & Daniel, Karine, 2011. "Decoupling and prices: determinant of dairy farmers’ choices?," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 92(1).
    15. Ben Fradj, Nosra & Jayet, Pierre-Alain, 2016. "Sensitivity of miscanthus supply: Application of Faustmann's rule in deterministic and stochastic cases," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235775, Agricultural and Applied Economics Association.
    16. Lelyon, Baptiste & Chatellier, Vincent & Daniel, Karine, 2008. "Milk Quotas Abolishment And Simplification Of The Single Payment Scheme: Implications On Dairy Farmers’ Productive Strategy In The West Of France," 109th Seminar, November 20-21, 2008, Viterbo, Italy 44795, European Association of Agricultural Economists.
    17. Remble, Amber & Britz, Wolfgang & Keeney, Roman, 2013. "Farm Level Tradeoffs in the Regulation of Greenhouse Gas Emissions," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150442, Agricultural and Applied Economics Association.
    18. Menozzi, Davide & Fioravanzi, Martina & Donati, Michele, 2014. "Understanding Farmers’ Responses To Cap Reform," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182811, European Association of Agricultural Economists.
    19. Parisa Aghajanzadeh-Darzi & Pierre-Alain Jayet & Athanasios Petsakos, 2017. "Improvement of a Bio-Economic Mathematical Programming Model in the Case of On-Farm Source Inputs and Outputs," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 15(3), pages 489-508, September.
    20. Cyril Bourgeois & Pierre-Alain Jayet & Florence Habets & Pascal Viennot, 2018. "Estimating the Marginal Social Value of Agriculturally Driven Nitrate Concentrations in an Aquifer: A Combined Theoretical-Applied Approach," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-30, January.
    21. Alexandre Gohin, 2020. "Prospective sur l'évolution des systèmes agricoles sur les territoires bretons en lien avec la reconquête de la qualité de l'eau-Etude des impacts de ces évolutions sur les revenus, les emplois direct," Working Papers hal-03331840, HAL.
    22. Lungarska, Anna & Jayet, Pierre-Alain, 2014. "Geographical Labeling of Agri-Food Products and its Incidence on the Cross-Sectional Approach to Climate Change Impacts Assessment," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182746, European Association of Agricultural Economists.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Humblot, Pierre & Jayet, Pierre-Alain & Petsakos, Athanasios, 2017. "Farm-level bio-economic modeling of water and nitrogen use: Calibrating yield response functions with limited data," Agricultural Systems, Elsevier, vol. 151(C), pages 47-60.
    2. Parisa Aghajanzadeh-Darzi & Pierre-Alain Jayet & Athanasios Petsakos, 2017. "Improvement of a Bio-Economic Mathematical Programming Model in the Case of On-Farm Source Inputs and Outputs," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 15(3), pages 489-508, September.
    3. Britz, Wolfgang & van Ittersum, Martin K. & Oude Lansink, Alfons G.J.M. & Heckelei, Thomas, 2012. "Tools for Integrated Assessment in Agriculture. State of the Art and Challenges," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(2), pages 1-26, August.
    4. Petsakos, Athanasios & Jayet, Pierre-Alain, 2010. "Evaluating the efficiency of a N-input tax under different policy scenarios at different scales," 120th Seminar, September 2-4, 2010, Chania, Crete 109397, European Association of Agricultural Economists.
    5. Jayet, Pierre-Alain & Petel, Elvire, 2015. "Economic valuation of the nitrogen content of urban organic residue by the agricultural sector," Ecological Economics, Elsevier, vol. 120(C), pages 272-281.
    6. Viaggi, Davide & Raggi, Meri & Gomez y Paloma, Sergio, 2011. "Farm-household investment behaviour and the CAP decoupling: Methodological issues in assessing policy impacts," Journal of Policy Modeling, Elsevier, vol. 33(1), pages 127-145, January.
    7. Lengers, Bernd & Britz, Wolfgang, 2012. "The choice of emission indicators in environmental policy design: an analysis of GHG abatement in different dairy farms based on a bio-economic model approach," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 93(2).
    8. Laure Bamière & Pierre‐Alain Jayet & Salomé Kahindo & Elsa Martin, 2021. "Carbon sequestration in French agricultural soils: A spatial economic evaluation," Agricultural Economics, International Association of Agricultural Economists, vol. 52(2), pages 301-316, March.
    9. Lungarska, Anna & Chakir, Raja, 2018. "Climate-induced Land Use Change in France: Impacts of Agricultural Adaptation and Climate Change Mitigation," Ecological Economics, Elsevier, vol. 147(C), pages 134-154.
    10. Eory, Vera, 2015. "Evaluating the use of marginal abatement cost curves applied to greenhouse gas abatement in agriculture," Working Papers 199777, Scotland's Rural College (formerly Scottish Agricultural College), Land Economy & Environment Research Group.
    11. Leclere, David & Jayet, Pierre-Alain & de Noblet-Ducoudre, Nathalie, 2011. "Short-term Farm Level Adaptations of EU15 Agricultural Supply to Climate Change," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114391, European Association of Agricultural Economists.
    12. Henseler, Martin & Dechow, Rene, 2014. "Simulation of regional nitrous oxide emissions from German agricultural mineral soils: A linkage between an agro-economic model and an empirical emission model," Agricultural Systems, Elsevier, vol. 124(C), pages 70-82.
    13. Cyril Bourgeois & Pierre-Alain Jayet & Florence Habets & Pascal Viennot, 2018. "Estimating the Marginal Social Value of Agriculturally Driven Nitrate Concentrations in an Aquifer: A Combined Theoretical-Applied Approach," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-30, January.
    14. Alexandra Sintori & Angelos Liontakis & Irene Tzouramani, 2019. "Assessing the Environmental Efficiency of Greek Dairy Sheep Farms: GHG Emissions and Mitigation Potential," Agriculture, MDPI, vol. 9(2), pages 1-14, February.
    15. Tzemi, Domna & Breen, James, 2019. "Reducing greenhouse gas emissions through the use of urease inhibitors: A farm level analysis," Ecological Modelling, Elsevier, vol. 394(C), pages 18-26.
    16. Kamel Elouhichi & Maria Espinosa Goded & Pavel Ciaian & Angel Perni Llorente & Bouda Vosough Ahmadi & Liesbeth Colen & Sergio Gomez Y Paloma, 2018. "The EU-Wide Individual Farm Model for Common Agricultural Policy Analysis (IFM-CAP v.1): Economic Impacts of CAP Greening," JRC Working Papers JRC108693, Joint Research Centre (Seville site).
    17. Garnache, Cloe & Merel, Pierre R., 2012. "Carbon market policy design: Investigating the role of payments aggregation," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124960, Agricultural and Applied Economics Association.
    18. Garnache, Cloé & Mérel, Pierre R. & Lee, Juhwan & Six, Johan, 2017. "The social costs of second-best policies: Evidence from agricultural GHG mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 39-73.
    19. Stephane de Cara & Bruno Vermont, 2014. "Atténuation de l’effet de serre d’origine agricole : efficacité en coûts et instruments de régulation," Post-Print hal-01173041, HAL.
    20. Louhichi, Kamel & Kanellopoulos, Argyris & Janssen, Sander & Flichman, Guillermo & Blanco, Maria & Hengsdijk, Huib & Heckelei, Thomas & Berentsen, Paul & Lansink, Alfons Oude & Ittersum, Martin Van, 2010. "FSSIM, a bio-economic farm model for simulating the response of EU farming systems to agricultural and environmental policies," Agricultural Systems, Elsevier, vol. 103(8), pages 585-597, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:97:y:2008:i:1-2:p:68-82. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/agsy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.